摘要翻译:
制度转换波动率模型提供了一种模拟随机波动率的简便方法。目前最常用的状态切换校准方法是Hamilton滤波器。我们建议使用Baum-Welch算法,一种从工程上建立起来的技术,来校准系统切换模型。我们演示了Baum-Welch算法,并讨论了它与Hamilton滤波器相比所提供的显著优势。我们给出了用标准普尔500数据校正Baum-Welch滤波器的计算结果,并验证了其在样本内外的性能。
---
英文标题:
《Regime Switching Volatility Calibration by the Baum-Welch Method》
---
作者:
Sovan Mitra
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
Regime switching volatility models provide a tractable method of modelling stochastic volatility. Currently the most popular method of regime switching calibration is the Hamilton filter. We propose using the Baum-Welch algorithm, an established technique from Engineering, to calibrate regime switching models instead. We demonstrate the Baum-Welch algorithm and discuss the significant advantages that it provides compared to the Hamilton filter. We provide computational results of calibrating the Baum-Welch filter to S&P 500 data and validate its performance in and out of sample.
---
PDF链接:
https://arxiv.org/pdf/0904.1500