摘要翻译:
在许多生物系统中都观察到了尺度不变的空间或时间模式以及L\'evy飞行运动。人们认为,动物一般都可以进行飞行运动,运动方向的两次变化之间的时间呈幂律分布。在这里我们研究筑巢的金边母猪的时间行为。在给定的活动形式中,一个金边所花费的时间具有幂律概率分布,没有有限的平均。进一步的分析揭示了某些周期性行为序列的间歇爆发,这些行为序列负责尺度行为,并表明临界状态的存在。我们表明,这种行为与湍流中发现的速度的时间序列非常相似,在湍流中,随机序列和规则序列交替形成间歇序列。
---
英文标题:
《Scaling and Intermittency in Animal Behavior》
---
作者:
A. Harnos, G. Horvath, A. B. Lawrence and G. Vattay
---
最新提交年份:
1999
---
分类信息:
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Scale-invariant spatial or temporal patterns and L\'evy flight motion have been observed in a large variety of biological systems. It has been argued that animals in general might perform L\'evy flight motion with power law distribution of times between two changes of the direction of motion. Here we study the temporal behaviour of nesting gilts. The time spent by a gilt in a given form of activity has power law probability distribution without finite average. Further analysis reveals intermittent eruption of certain periodic behavioural sequences which are responsible for the scaling behaviour and indicates the existence of a critical state. We show that this behaviour is in close analogy with temporal sequences of velocity found in turbulent flows, where random and regular sequences alternate and form an intermittent sequence.
---
PDF链接:
https://arxiv.org/pdf/chao-dyn/9901009