摘要翻译:
复杂网络表现出各种类型的渗流转变。我们指出,单凭度分布和度-度相关不足以描述不同的渗流临界现象。这表明,真正的结构相关性是表征网络的一个重要因素。作为相关性的一个特征,我们研究了在$m_n(h)$中的缩放行为,即大小为$h$的有限环的数目,相对于网络大小$n$。我们发现度分布不太宽的网络可分为两类,分别为$M_n(h)\sim({常数})$和$M_n(h)\sim(\lnn)^\psi$。这种分类与根据渗流临界现象进行的分类是一致的。
---
英文标题:
《Percolation and Loop Statistics in Complex Networks》
---
作者:
Jae Dong Noh (UOS)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
Complex networks display various types of percolation transitions. We show that the degree distribution and the degree-degree correlation alone are not sufficient to describe diverse percolation critical phenomena. This suggests that a genuine structural correlation is an essential ingredient in characterizing networks. As a signature of the correlation we investigate a scaling behavior in $M_N(h)$, the number of finite loops of size $h$, with respect to a network size $N$. We find that networks, whose degree distributions are not too broad, fall into two classes exhibiting $M_N(h)\sim ({constant})$ and $M_N(h) \sim (\ln N)^\psi$, respectively. This classification coincides with the one according to the percolation critical phenomena.
---
PDF链接:
https://arxiv.org/pdf/707.056