全部版块 我的主页
论坛 经济学人 二区 外文文献专区
276 0
2022-03-08
摘要翻译:
现有的基于三维压缩感知的毫米波(MMW)成像方法由于采用高维矩阵-矢量模型进行优化,需要大规模存储感知矩阵和计算量。为了克服这一缺点,我们提出了一种基于全息算法的压缩传感(CS)方法,用于毫米波近场三维成像。提出了一种无插值全息成像算法,并将其用作传感算子,以代替CS迭代优化过程中通常使用的名义传感矩阵。这样,避免了大规模传感矩阵引起的问题。在不需要插值的情况下,可以提高计算速度和图像质量。仿真和实验结果表明,该方法与基于Omega-K的CS和传统的基于傅立叶的成像技术相比具有较好的性能。
---
英文标题:
《Compressive Sensing Imaging of 3-D Object by a Holographic Algorithm》
---
作者:
Shiyong Li, Guoqiang Zhao, Houjun Sun, and Moeness Amin
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Existing three-dimensional (3-D) compressive sensing-based millimeter-wave (MMW) imaging methods require a large-scale storage of the sensing matrix and immense computations owing to the high dimension matrix-vector model employed in the optimization. To overcome this shortcoming, we propose an efficient compressive sensing (CS) method based on a holographic algorithm for near-field 3-D MMW imaging. An interpolation-free holographic imaging algorithm is developed and used as a sensing operator, in lieu of the nominal sensing matrix typically used in the CS iterative optimization procedure. In so doing, the problem induced by the large-scale sensing matrix is avoided. With no interpolations required, both the computational speed and the image quality can be improved. Simulation and experimental results are provided to demonstrate the performance of the proposed method in comparison with those of the Omega-K based CS and the traditional Fourier-based imaging techniques.
---
PDF链接:
https://arxiv.org/pdf/1804.10683
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群