全部版块 我的主页
论坛 经济学人 二区 外文文献专区
295 0
2022-03-08
摘要翻译:
高空间-角分辨率扩散MRI(dMRI)已经被证明可以准确地识别复杂的光纤结构,尽管代价是获取时间长。我们提出了一种在高空间-角分辨率下恢复体素内光纤结构的方法,该方法依赖于KQ空间欠采样方案,以实现加速捕获。利用一种结构化的稀疏先验规则化重构光纤方向分布(FOD)的反问题,同时提高了光纤方向的体素稀疏性和空间光滑性。还假定了白质、灰质和脑脊液的空间分布的先验知识。通过一种前向-后向凸优化算法结构,构造并求解了一个最小化问题。模拟和实际数据分析表明,在严重的KQ空间欠采样情况下,可以实现精确的FOD标测,从而有可能在临床环境中实现高空间角dMRI。
---
英文标题:
《Fast Fiber Orientation Estimation in Diffusion MRI from kq-Space
  Sampling and Anatomical Priors》
---
作者:
Marica Pesce, Audrey Repetti, Anna Aur\'ia, Alessandro Daducci,
  Jean-Philippe Thiran, Yves Wiaux
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Physics        物理学
二级分类:Medical Physics        医学物理学
分类描述:Radiation therapy. Radiation dosimetry. Biomedical imaging modelling.  Reconstruction, processing, and analysis. Biomedical system modelling and analysis. Health physics. New imaging or therapy modalities.
放射治疗。辐射剂量学。生物医学成像建模。重建、处理和分析。生物医学系统建模与分析。健康物理学。新的成像或治疗方式。
--

---
英文摘要:
  High spatio-angular resolution diffusion MRI (dMRI) has been shown to provide accurate identification of complex fiber configurations, albeit at the cost of long acquisition times. We propose a method to recover intra-voxel fiber configurations at high spatio-angular resolution relying on a kq-space under-sampling scheme to enable accelerated acquisitions. The inverse problem for reconstruction of the fiber orientation distribution (FOD) is regularized by a structured sparsity prior promoting simultaneously voxelwise sparsity and spatial smoothness of fiber orientation. Prior knowledge of the spatial distribution of white matter, gray matter and cerebrospinal fluid is also assumed. A minimization problem is formulated and solved via a forward-backward convex optimization algorithmic structure. Simulations and real data analysis suggest that accurate FOD mapping can be achieved from severe kq-space under-sampling regimes, potentially enabling high spatio-angular dMRI in the clinical setting.
---
PDF链接:
https://arxiv.org/pdf/1802.02912
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群