全部版块 我的主页
论坛 经济学人 二区 外文文献专区
804 0
2022-03-08
摘要翻译:
本文给出了图傅里叶变换(GFT)的一个新的推广。我们的方法是基于分别考虑信号能量和信号变化的定义,导致几种可能的正交GFT。我们的方法包括传统的GFT定义作为特殊情况,同时也导致新的GFT设计,更好地考虑到图形的不规则性质。作为一个例子,在传感器网络的背景下,我们在GFT定义中使用了顶点的Voronoi单元面积,表明即使在采样高度不规则的情况下,它也导致了更合理的图信号能量定义。
---
英文标题:
《Irregularity-Aware Graph Fourier Transforms》
---
作者:
Benjamin Girault, Antonio Ortega, Shrikanth Narayanan
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  In this paper, we present a novel generalization of the graph Fourier transform (GFT). Our approach is based on separately considering the definitions of signal energy and signal variation, leading to several possible orthonormal GFTs. Our approach includes traditional definitions of the GFT as special cases, while also leading to new GFT designs that are better at taking into account the irregular nature of the graph. As an illustration, in the context of sensor networks we use the Voronoi cell area of vertices in our GFT definition, showing that it leads to a more sensible definition of graph signal energy even when sampling is highly irregular.
---
PDF链接:
https://arxiv.org/pdf/1802.1022
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群