摘要翻译:
利用Goresky-MacPherson发展的不动点排列技术,计算了2次仿射旗簇的部分等变上同调。原来这是一个二次圆锥体。我们还把全等变上同调环的谱描述为一个显式的几何对象。我们利用我们的结果证明了仿射旗变体的矩映射图像的顶点位于抛物面上。
---
英文标题:
《Goresky-MacPherson calculus for the affine flag varieties》
---
作者:
Zhiwei Yun
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
---
英文摘要:
We use the fixed point arrangement technique developed by Goresky-MacPherson to calculate the part of the equivariant cohomology of the affine flag varieties generated by degree 2. This turns out to be a quadric cone. We also describe the spectrum of the full equivariant cohomology ring as an explicit geometric object. We use our results to show that the vertices of the moment map images of the affine flag varieties lie on a paraboloid.
---
PDF链接:
https://arxiv.org/pdf/0712.4395