全部版块 我的主页
论坛 经济学人 二区 外文文献专区
460 0
2022-03-08
摘要翻译:
混响和加性噪声对自动语音识别系统的性能有不利影响。本文探讨了基于DNN的光谱特征映射去除混响和加性噪声影响的能力。在CHiME-2数据库上的实验表明,与基线系统相比,该DNN在SNRs分别为-6dB、-3dB、0dB和3dB时,平均降低了4.5%的WER;在较大的SNRs分别为6dB和9dB时,平均降低了0.8%。这些结果表明,这种DNN在去除加性噪声方面比混响更有效。为了提高DNN的性能,我们将其与加权预测误差(WPE)方法相结合,表现出互补的行为。虽然与基线相比,这种组合提供了大约11%的WER减少,但观察到的改善不如单独使用WPE获得的那么大。然而,对DNN训练过程的修改被应用,与基线系统相比,WER平均减少了18.3%。此外,改进后的DNN与WPE联合使用比单独使用WPE降低了7.9%的功耗。
---
英文标题:
《An improved DNN-based spectral feature mapping that removes noise and
  reverberation for robust automatic speech recognition》
---
作者:
Juan Pablo Escudero, Jos\'e Novoa, Rodrigo Mahu, Jorge Wuth, Fernando
  Huenup\'an, Richard Stern and N\'estor Becerra Yoma
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--

---
英文摘要:
  Reverberation and additive noise have detrimental effects on the performance of automatic speech recognition systems. In this paper we explore the ability of a DNN-based spectral feature mapping to remove the effects of reverberation and additive noise. Experiments with the CHiME-2 database show that this DNN can achieve an average reduction in WER of 4.5%, when compared to the baseline system, at SNRs equal to -6 dB, -3 dB, 0 dB and 3 dB, and just 0.8% at greater SNRs of 6 dB and 9 dB. These results suggest that this DNN is more effective in removing additive noise than reverberation. To improve the DNN performance, we combine it with the weighted prediction error (WPE) method that shows a complementary behavior. While this combination provided a reduction in WER of approximately 11% when compared with the baseline, the observed improvement is not as great as that obtained using WPE alone. However, modifications to the DNN training process were applied and an average reduction in WER equal to 18.3% was achieved when compared with the baseline system. Furthermore, the improved DNN combined with WPE achieves a reduction in WER of 7.9% when compared with WPE alone.
---
PDF链接:
https://arxiv.org/pdf/1803.09016
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群