摘要翻译:
基于蚂蚁的算法是解决复杂问题的成功工具。其中一个问题是线性排序问题(LOP)。本文利用蚁群系统(ACS)和步退敏感蚂蚁模型(SB-SAM)在一些LOP实例上给出了新的结果。
---
英文标题:
《New results of ant algorithms for the Linear Ordering Problem》
---
作者:
Camelia-M. Pintea, Camelia Chira, D. Dumitrescu
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖
神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
---
英文摘要:
Ant-based algorithms are successful tools for solving complex problems. One of these problems is the Linear Ordering Problem (LOP). The paper shows new results on some LOP instances, using Ant Colony System (ACS) and the Step-Back Sensitive Ant Model (SB-SAM).
---
PDF链接:
https://arxiv.org/pdf/1208.5340