全部版块 我的主页
论坛 经济学人 二区 外文文献专区
306 0
2022-03-11
摘要翻译:
光网络物理层的监控是一个非常相关的课题。为了检测光纤故障,单端解决方案如光时域反射计(OTDR)允许精确测量故障轮廓。将OTDR与用于高维稀疏参数估计的信号处理方法相结合,可以在缩短的时间内获得自动化和可靠的结果。本文提出了一种由光子计数OTDR数据采集单元和基于线性化Bregman迭代算法的自动故障诊断处理单元组成的测量系统。对该算法在噪声环境下的故障诊断能力进行了深入的比较研究。在模拟环境中分析了敏感性、特异性、处理时间和复杂性等特征。使用光子计数OTDR子系统进行数据采集,并使用基于线性化布雷格曼的处理单元进行自动数据分析,实际测量显示出准确的结果。结果表明,所提出的测量系统特别适合于故障诊断任务。该算法的自然特性促进了将解决方案嵌入到数字硬件中,从而降低了成本和处理时间。
---
英文标题:
《Linearized Bregman Iterations for Automatic Optical Fiber Fault Analysis》
---
作者:
Michael Lunglmayr and Gustavo C. Amaral
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Supervision of the physical layer of optical networks is an extremely relevant subject. To detect fiber faults, single-ended solutions such as the Optical Time Domain Reflectometer (OTDR) allow for precise measurements of fault profiles. Combining the OTDR with a signal processing approach for high-dimensional sparse parameter estimation allows for automated and reliable results in reduced time. In this work, a measurement system composed of a Photon-Counting OTDR data acquisition unit and a processing unit based on a Linearized Bregman Iterations algorithm for automatic fault finding is proposed. An in-depth comparative study of the proposed algorithm's fault-finding prowess in the presence of noise is presented. Characteristics such as sensitivity, specificity, processing time, and complexity, are analysed in simulated environments. Real-life measurements that are conducted using the Photon-Counting OTDR subsystem for data acquisition and the Linearized Bregman-based processing unit for automated data analysis demonstrated accurate results. It is concluded that the proposed measurement system is particularly well suited to the task of fault finding. The natural characteristic of the algorithm fosters embedding the solution in digital hardware, allowing for reduced costs and processing time.
---
PDF链接:
https://arxiv.org/pdf/1805.05902
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群