摘要翻译:
信号处理和采集中的密集增长方法,即压缩感知方法,允许从少量随机获取的信号系数中恢复稀疏信号。本文分析了几种常用的基于阈值的稀疏信号重建算法。信号满足压缩传感理论所要求的条件。观察了正交匹配追踪、迭代硬阈值化和单次迭代重建算法。实验部分从重构误差和执行时间两方面进行了比较。
---
英文标题:
《Comparison of threshold-based algorithms for sparse signal recovery》
---
作者:
Tamara Koljensic, Caslav Labudovic
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Multimedia 多媒体
分类描述:Roughly includes material in ACM Subject Class H.5.1.
大致包括ACM学科类H.5.1中的材料。
--
---
英文摘要:
Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal Matching Pursuit, Iterative Hard Thresholding and Single Iteration Reconstruction algorithms are observed. Comparison in terms of reconstruction error and execution time is performed within the experimental part of the paper.
---
PDF链接:
https://arxiv.org/pdf/1802.0718