全部版块 我的主页
论坛 经济学人 二区 外文文献专区
307 0
2022-03-12
摘要翻译:
许多音乐理论结构(如音阶类型、调式、节奏和和弦类型)都是根据音高间隔--音高之间的相对距离来定义的。因此,当计算机模型用于音乐任务时,在音程表示上而不是在原始音乐表面上操作是有用的。此外,区间表示是换位不变的,对于音频对齐、翻唱歌曲检测和音乐结构分析等任务都有价值。我们使用门控自动编码器从符号域和音频中的复调音乐中学习定长、可逆和换位不变的区间表示。提出了一种无监督训练方法,在表达空间中产生了一种音乐上合理的音程组织。在此基础上,构造了一个换位不变的自相似矩阵,并用于确定符号音乐和音频中的重复片段,在MIREX任务“重复主题和片段的发现”中产生了竞争性的结果。
---
英文标题:
《Learning Transposition-Invariant Interval Features from Symbolic Music
  and Audio》
---
作者:
Stefan Lattner, Maarten Grachten, Gerhard Widmer
---
最新提交年份:
2019
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Sound        声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Audio and Speech Processing        音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome.  Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval;  audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--

---
英文摘要:
  Many music theoretical constructs (such as scale types, modes, cadences, and chord types) are defined in terms of pitch intervals---relative distances between pitches. Therefore, when computer models are employed in music tasks, it can be useful to operate on interval representations rather than on the raw musical surface. Moreover, interval representations are transposition-invariant, valuable for tasks like audio alignment, cover song detection and music structure analysis. We employ a gated autoencoder to learn fixed-length, invertible and transposition-invariant interval representations from polyphonic music in the symbolic domain and in audio. An unsupervised training method is proposed yielding an organization of intervals in the representation space which is musically plausible. Based on the representations, a transposition-invariant self-similarity matrix is constructed and used to determine repeated sections in symbolic music and in audio, yielding competitive results in the MIREX task "Discovery of Repeated Themes and Sections".
---
PDF链接:
https://arxiv.org/pdf/1806.08236
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群