摘要翻译:
设(S,BS)是与给定光滑拟射影曲面V的紧致相关的对数对。在边界BS不可约的假设下,我们提出了一个算法,该算法在对数Mori理论的框架下,根据(log)Sarkisov程序的精神,将V的任何自同构分解为一个初等链环序列。新的值得注意的特点,我们的算法是所有的爆破和收缩所涉及的过程都发生在边界上。
---
英文标题:
《Variations on Log Sarkisov Program for Surfaces》
---
作者:
Adrien Dubouloz (IMB), St\'ephane Lamy (ICJ)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let (S, BS) be the log-pair associated with a compactification of a given smooth quasi-projective surface V . Under the assumption that the boundary BS is irreducible, we propose an algorithm, in the spirit of the (log) Sarkisov program, to factorize any automorphism of V into a sequence of elementary links in the framework of the logarithmic Mori theory. The new noteworthy feature of our algorithm is that all the blow-ups and contractions involved in the process occur on the boundary.
---
PDF链接:
https://arxiv.org/pdf/0802.2441