摘要翻译:
压敏垫(PSM)已被证明在估计成人患者呼吸频率(RR)方面是有用的。然而,PSM技术还没有广泛应用于婴儿和新生儿的生理参数的提取。这项研究评估了电容式XSensor PSM技术在几种实验条件下进行的新生儿患者模拟试验中估计RR范围的适用性。对PSM数据进行了时域和频域分析,并给出了比较结果。对于频域方法,除了估计RR外,还从周期图中峰值的相对高度导出置信度。研究表明,与时域可达到的最低均方根误差1.57%相比,均值偏移PSM数据的频域分析实现了最佳的RR估计,误差为零%。无论是检测原始数据还是经过归一化、去中心化和中值滤波预处理的数据,频域方法都优于时域分析。
---
英文标题:
《Comparing time and frequency domain estimation of neonatal respiratory
rate using pressure-sensitive mats》
---
作者:
Shermeen Nizami, Amente Bekele, Mohamed Hozayen, Kim Greenwood, JoAnn
Harrold, James R. Green
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Pressure-sensitive mats (PSM) have proved to be useful in the estimation of respiratory rates (RR) in adult patients. However, PSM technology has not been extensively applied to derive physiologic parameters in infant and neonatal patients. This research evaluates the applicability of the capacitive XSensor PSM technology to estimate a range of RR in neonatal patient simulator trials conducted under several experimental conditions. PSM data are analyzed in both the time and frequency domain and comparative results are presented. For the frequency-domain approach, in addition to estimating RR, a measure of confidence is also derived from the relative height of peaks in the periodogram. The study demonstrates that frequency domain analysis of mean-shifted PSM data achieves the best possible RR estimation, with zero percent error, as compared to the lowest achievable RMS error of 1.57 percent in the time domain. The frequency domain approach outperforms the time domain analysis whether examining raw data or those preprocessed by normalizing, detrending and median filtering.
---
PDF链接:
https://arxiv.org/pdf/1805.00083