全部版块 我的主页
论坛 经济学人 二区 外文文献专区
520 0
2022-03-14
摘要翻译:
离散约束Nash-Cournot博弈引起了人们的关注,因为它们出现在各种竞争性的能量生产环境中,参与者必须做出一个或多个离散的决策。加布里埃尔等人。[“解决离散约束纳什-古诺博弈及其在电力市场中的应用”,《网络与空间经济学》13(3),2013]声称,离散约束纳什-古诺博弈的均衡集与相应的离散约束混合互补问题的解集是一致的。我们证明这种说法是错误的。
---
英文标题:
《A Note on Solving Discretely-Constrained Nash-Cournot Games via
  Complementarity》
---
作者:
Dimitri J. Papageorgiou, Francisco Trespalacios, Stuart Harwood
---
最新提交年份:
2020
---
分类信息:

一级分类:Economics        经济学
二级分类:Theoretical Economics        理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--

---
英文摘要:
  Discretely-constrained Nash-Cournot games have attracted attention as they arise in various competitive energy production settings in which players must make one or more discrete decisions. Gabriel et al. ["Solving discretely-constrained Nash-Cournot games with an application to power markets." Networks and Spatial Economics 13(3), 2013] claim that the set of equilibria to a discretely-constrained Nash-Cournot game coincides with the set of solutions to a corresponding discretely-constrained mixed complementarity problem. We show that this claim is false.
---
PDF链接:
https://arxiv.org/pdf/2003.01536
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群