摘要翻译:
我们定义了一个Artin叠,它可以被认为是零亏格的稳定两点曲线的不存在(或空)模空间的替代。我们证明了这个Artin堆栈可以看作是堆栈范畴中循环操作数的第一项。应用同调函子,我们得到了一个线性循环操作数。我们提出猜想,断言光滑射影簇的上同调在这个同调操作上具有代数的结构,引力量子上同调可以自然地用这个代数来表示。作为对这些猜想的检验,我们展示了如何从它们中推导出某些众所周知的引力相关子之间的关系。
---
英文标题:
《A Cyclic Operad in the Category of Artin Stacks and Gravitational
Correlators》
---
作者:
Ivan Kausz
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We define an Artin stack which may be considered as a substitute for the non-existing (or empty) moduli space of stable two-pointed curves of genus zero. We show that this Artin stack can be viewed as the first term of a cyclic operad in the category of stacks. Applying the homology functor we obtain a linear cyclic operad. We formulate conjectures which assert that cohomology of a smooth projective variety has the structure of an algebra over this homology operad and that gravitational quantum cohomology can naturally expressed in terms of this algebra. As a test for these conjectures we show how certain well-known relations between gravitational correlators can be deduced from them.
---
PDF链接:
https://arxiv.org/pdf/0802.3675