摘要翻译:
根据定义,II_1型未投影是[Papadakis,type II未投影,J.代数几何,15(2006)399--414]第3.1节意义上的泛型完全交集II型未投影,参数值k=1,并依赖于大于或等于2的参数n。我们的主要结果是:当n大于或等于2时,II_1型未投影线性关系的显式计算(定理3.16);当n=3时,二次方程的显式计算(定理4.1)。此外,第5节包含代数几何的应用,而第6节包含参数值n=3的II_1型未投影的Macaulay2代码。
---
英文标题:
《Some calculations on type II_1 unprojection》
---
作者:
Stavros Argyrios Papadakis
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
The type II_1 unprojection is, by definition, the generic complete intersection type II unprojection, in the sense of [Papadakis, Type II unprojection, J. Algebraic Geometry, 15 (2006) 399--414] Section 3.1, for the parameter value k = 1, and depends on a parameter n greater or equal than 2. Our main results are the explicit calculation of the linear relations of the type II_1 unprojection for any value of n greater or equal than 2 (Theorem 3.16) and the explicit calculation of the quadratic equation for the case n = 3 (Theorem 4.1). In addition, Section 5 contains applications to algebraic geometry while Section 6 contains the Macaulay 2 code for the type II_1 unprojection for the parameter value n = 3.
---
PDF链接:
https://arxiv.org/pdf/0708.0727