全部版块 我的主页
论坛 经济学人 二区 外文文献专区
380 0
2022-03-24
摘要翻译:
纹理分类是90年代末以来计算机科学工作者一直关注的问题之一。正确准确地进行纹理分类,可以应用于模式识别、目标跟踪、形状识别等领域。到目前为止,已经有很多方法来解决这个问题。几乎所有这些方法都试图提取和定义特征来区分纹理的不同标签。本文提出了一种基于局部二值模式和灰度共生矩阵对纹理图像进行整体处理,然后通过边缘检测,最后从图像中提取统计特征进行分类的方法。虽然该方法是一种通用的方法,适用于不同的应用场合,但在石材纹理上进行了测试,并与以前的一些方法进行了比较,证明了该方法的质量。
---
英文标题:
《Texture Classification Approach Based on Combination of Edge &
  Co-occurrence and Local Binary Pattern》
---
作者:
Shervan Fekri Ershad
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Texture classification is one of the problems which has been paid much attention on by computer scientists since late 90s. If texture classification is done correctly and accurately, it can be used in many cases such as Pattern recognition, object tracking, and shape recognition. So far, there have been so many methods offered to solve this problem. Near all these methods have tried to extract and define features to separate different labels of textures really well. This article has offered an approach which has an overall process on the images of textures based on Local binary pattern and Gray Level Co-occurrence matrix and then by edge detection, and finally, extracting the statistical features from the images would classify them. Although, this approach is a general one and is could be used in different applications, the method has been tested on the stone texture and the results have been compared with some of the previous approaches to prove the quality of proposed approach.
---
PDF链接:
https://arxiv.org/pdf/1203.4855
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群