摘要翻译:
研究了多维Black-Scholes框架中的风险最小化问题$\Mathbf{E}[L((H-X_t^{x,\pi})^{+})]\Overset{\pi}{\longrightarrow}\min$。给出了篮子衍生工具的最小风险函数和成本降低函数的具体公式。给出了在$L(x)=x$和$L(x)=x^p$的情况下,数字期权、quantos期权、优绩期权和价差期权的风险函数的显式积分表示,$P>1$。
---
英文标题:
《Integral representations of risk functions for basket derivatives》
---
作者:
Micha{\l} Barski
---
最新提交年份:
2016
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
The risk minimizing problem $\mathbf{E}[l((H-X_T^{x,\pi})^{+})]\overset{\pi}{\longrightarrow}\min$ in the multidimensional Black-Scholes framework is studied. Specific formulas for the minimal risk function and the cost reduction function for basket derivatives are shown. Explicit integral representations for the risk functions for $l(x)=x$ and $l(x)=x^p$, with $p>1$ for digital, quantos, outperformance and spread options are derived.
---
PDF链接:
https://arxiv.org/pdf/1102.3928