摘要翻译:
本文证明了经典Narasimhan-Seshadri定理在高维上的一个类似定理,证明了在光滑射影簇$x$上强稳定的0次向量丛具有固定的充足线丛$theta$。作为应用,在特征零点域上,我们对Balaji和Koll\'ar最近一篇论文中的主要定理给出了一个新的证明,并导出了该定理的一个有效版本;在具有正特征的不可数域上,如果$G$是单连通代数群,且域的特征大于$G$的Coxeter指数,我们证明了光滑射影曲面上强稳定主$G$丛的存在性,其完整群是$G$的整。
---
英文标题:
《An analogue of the Narasimhan-Seshadri theorem and some applications》
---
作者:
V. Balaji and A.J. Parameswaran
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove an analogue in higher dimensions of the classical Narasimhan-Seshadri theorem for strongly stable vector bundles of degree 0 on a smooth projective variety $X$ with a fixed ample line bundle $\Theta$. As applications, over fields of characteristic zero, we give a new proof of the main theorem in a recent paper of Balaji and Koll\'ar and derive an effective version of this theorem; over uncountable fields of positive characteristics, if $G$ is a simple and simply connected algebraic group and the characteristic of the field is bigger than the Coxeter index of $G$, we prove the existence of strongly stable principal $G$ bundles on smooth projective surfaces whose holonomy group is the whole of $G$.
---
PDF链接:
https://arxiv.org/pdf/0809.3765