摘要翻译:
在随机矩阵理论中,Wigner猜想及其推广很好地拟合了空间分布函数P^{(n)}(s)$。在这个近似中,空间函数完全由精确函数在极限s->0和s->无穷大的行为来描述。大多数非平衡系统的间距分布和相关函数都没有解析解。正因为如此,我们探索了在这些系统中使用Wigner猜测近似的可能性。我们发现这种近似为复杂系统的统计行为提供了第一种方法,特别是我们用它来寻找湮没随机游动的最近邻分布的解析近似。
---
英文标题:
《Wigner Surmise For Domain Systems》
---
作者:
Diego Luis Gonzalez and Gabriel Tellez (Universidad de los Andes,
Bogota, Colombia)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
In random matrix theory, the spacing distribution functions $p^{(n)}(s)$ are well fitted by the Wigner surmise and its generalizations. In this approximation the spacing functions are completely described by the behavior of the exact functions in the limits s->0 and s->infinity. Most non equilibrium systems do not have analytical solutions for the spacing distribution and correlation functions. Because of that, we explore the possibility to use the Wigner surmise approximation in these systems. We found that this approximation provides a first approach to the statistical behavior of complex systems, in particular we use it to find an analytical approximation to the nearest neighbor distribution of the annihilation random walk.
---
PDF链接:
https://arxiv.org/pdf/712.2011