摘要翻译:
我们描述了一个专家系统,MAIES,开发用于分析涉及DNA混合物痕迹的法医鉴定问题,使用定量峰面积信息。峰面积信息由条件高斯分布表示,基于精确连接树传播的推断确定轮廓已被测量的个体是否对混合有贡献。该系统还可用于预测未知贡献者的DNA图谱,通过将混合物分离成其单独的组分。通过一个实际应用实例说明了该系统的使用。该系统实现了一种新的MAP(最大后验概率)搜索算法,在附录中进行了描述。
---
英文标题:
《MAIES: A Tool for DNA Mixture Analysis》
---
作者:
Robert G. Cowell, Steffen L. Lauritzen, Julia Mortera
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
We describe an expert system, MAIES, developed for analysing forensic identification problems involving DNA mixture traces using quantitative peak area information. Peak area information is represented by conditional Gaussian distributions, and inference based on exact junction tree propagation ascertains whether individuals, whose profiles have been measured, have contributed to the mixture. The system can also be used to predict DNA profiles of unknown contributors by separating the mixture into its individual components. The use of the system is illustrated with an application to a real world example. The system implements a novel MAP (maximum a posteriori) search algorithm that is described in an appendix.
---
PDF链接:
https://arxiv.org/pdf/1206.6816