摘要翻译:
为了描述单参数族中消失周期的渐近性态,我们引入并使用了一个非常简单的代数结构:由一个元素生成的正则几何(a,b)-模(如左$\a-$模)。其思想不是使用与Gauss-Manin连接相关的全Brieskorn模,而是使用我们感兴趣的周期积分所满足的极小(正则)微分方程。我们证明了对于这类(a,b)-模,相关的Bernstein多项式是相当简单的计算,并给出了避免积分移位的渐近展开式中出现的指数的精确描述。我们在一些经典的(但不是那么容易的)例子中展示了几个显式的计算。
---
英文标题:
《P\'eriodes \'evanescentes et $(a,b)$-modules monog\`enes》
---
作者:
Daniel Barlet (IECN, Iuf)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In order to describe the asymptotic behaviour of a vanishing period in a one parameter family we introduce and use a very simple algebraic structure : regular geometric (a,b)-modules generated (as left $\A-$modules) by one element. The idea is to use not the full Brieskorn module associated to the Gauss-Manin connection but a minimal (regular) differential equation satisfied by the period integral we are interested in. We show that the Bernstein polynomial associated is quite simple to compute for such (a,b)-modules and give a precise description of the exponents which appears in the asymptotic expansion which avoids integral shifts. We show a couple of explicit computations in some classical (but not so easy) examples.
---
PDF链接:
https://arxiv.org/pdf/0901.1953