摘要翻译:
本文认为,有限信息量的学习主体在复杂环境中能够有效地学习以达到何种目标,受到其信息结构的限制。进化变化对于在任何复杂环境中为所有学习代理创建所需的结构是至关重要的。这表明目前还没有一种有效的通用学习算法。智能体只能通过缓慢的进化变化或盲目搜索来超越其结构所施加的学习限制,这在非常复杂的环境中只能给智能体一种低效的普遍学习能力,这种能力只能在进化的时间尺度或不太可能的运气下工作。
---
英文标题:
《Evolution and the structure of learning agents》
---
作者:
Alok Raj
---
最新提交年份:
2013
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
  This paper presents the thesis that all learning agents of finite information size are limited by their informational structure in what goals they can efficiently learn to achieve in a complex environment. Evolutionary change is critical for creating the required structure for all learning agents in any complex environment. The thesis implies that there is no efficient universal learning algorithm. An agent can go past the learning limits imposed by its structure only by slow evolutionary change or blind search which in a very complex environment can only give an agent an inefficient universal learning capability that can work only in evolutionary timescales or improbable luck. 
---
PDF链接:
https://arxiv.org/pdf/1209.3818