摘要翻译:
本文将Vinberg的θ群或周期分次约化李代数的基本结果推广到具有良好正特征的域。为此,我们澄清了小Weyl群和(标准)Weyl群之间的关系。我们推导出与分级相关的不变量环是一个多项式环。这种方法证明了经典分次李代数(在零或好特征下)存在KW截面,证实了Popov在这种情况下的一个猜想。
---
英文标题:
《Vinberg's \theta-groups in positive characteristic and
Kostant-Weierstrass slices》
---
作者:
Paul Levy
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We generalize the basic results of Vinberg's \theta-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. We deduce that the ring of invariants associated to the grading is a polynomial ring. This approach allows us to prove the existence of a KW-section for a classical graded Lie algebra (in zero or good characteristic), confirming a conjecture of Popov in this case.
---
PDF链接:
https://arxiv.org/pdf/0712.1725