全部版块 我的主页
论坛 经济学人 二区 外文文献专区
319 0
2022-04-05
摘要翻译:
现代制造业越来越多地寻求预测分析来从过程数据中获得决策信息。这是由高水平的竞争和降低运营成本的需要推动的。本文以医疗设备制造过程中记录的功率测量数据为例,利用多元数据分析(MVDA)提取信息,提出了一种预测性维修调度算法。所提出的MVDA模型能够以100%的精度预测磨具的状态。
---
英文标题:
《Application of Multivariate Data Analysis to machine power measurements
  as a means of tool life Predictive Maintenance for reducing product waste》
---
作者:
Darren A Whitaker, David Egan, Eoin OBrien, David Kinnear
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Modern manufacturing industries are increasingly looking to predictive analytics to gain decision making information from process data. This is driven by high levels of competition and a need to reduce operating costs. The presented work takes data in the form of a power measurement recorded during a medical device manufacturing process and uses multivariate data analysis (MVDA) to extract information leading to the proposal of a predictive maintenance scheduling algorithm. The proposed MVDA model was able to predict with 100 % accuracy the condition of a grinding tool.
---
PDF链接:
https://arxiv.org/pdf/1802.08338
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群