摘要翻译:
统计参数语音合成(SPSS)的输出在质量、自然度、说话人相似度和噪声中的可懂度方面明显低于自然语音记录。关于这些缺点的起源有许多假设,但这些假设往往保持模糊,没有经验证据来证实和量化特定缺点是如何导致合成语音不完美的。在整个语音合成文献中,很少有人致力于识别语音合成中感知上最重要的问题,尽管这些知识对创建更好的SPSS系统有很大的价值。在这本书的章节中,我们分析了SPSS的一些缺点。特别是,我们讨论了语音编码的问题,并提出了一种通用的方法,用于量化许多假设和设计选择的影响,这些假设和设计选择阻碍了SPSS的发展。该方法附有一个例子,仔细测量和比较语音编码以及其他因素(如统计模型及其使用)造成的知觉限制的严重程度。
---
英文标题:
《Analysing Shortcomings of Statistical Parametric Speech Synthesis》
---
作者:
Gustav Eje Henter, Simon King, Thomas Merritt and Gilles Degottex
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
---
英文摘要:
Output from statistical parametric speech synthesis (SPSS) remains noticeably worse than natural speech recordings in terms of quality, naturalness, speaker similarity, and intelligibility in noise. There are many hypotheses regarding the origins of these shortcomings, but these hypotheses are often kept vague and presented without empirical evidence that could confirm and quantify how a specific shortcoming contributes to imperfections in the synthesised speech. Throughout speech synthesis literature, surprisingly little work is dedicated towards identifying the perceptually most important problems in speech synthesis, even though such knowledge would be of great value for creating better SPSS systems. In this book chapter, we analyse some of the shortcomings of SPSS. In particular, we discuss issues with vocoding and present a general methodology for quantifying the effect of any of the many assumptions and design choices that hold SPSS back. The methodology is accompanied by an example that carefully measures and compares the severity of perceptual limitations imposed by vocoding as well as other factors such as the statistical model and its use.
---
PDF链接:
https://arxiv.org/pdf/1807.10941