摘要翻译:
展示广告业最近已经从第二价格拍卖过渡到第一价格拍卖,作为其广告分配和定价的主要机制。鉴于此,出版商需要重新评估和优化他们的拍卖参数,特别是保留价格。在本文中,我们提出了一个基于梯度的算法来自适应地更新和优化保留价格,基于投标人对实验冲击的反应估计。本文的创新之处在于利用收益目标的内在结构来减少梯度估计的方差,提高理论和实践上的收敛速度。我们证明了一价拍卖中的收入可以有效地分解为一个\emph{demand}分量和一个\emph{bedding}分量,并介绍了减小每个分量方差的技术。通过对合成数据和Google ad Exchange的真实显示广告拍卖数据的实验,我们描述了这些技术的偏差-方差权衡,并验证了我们提出的算法的性能。
---
英文标题:
《Reserve Price Optimization for First Price Auctions》
---
作者:
Zhe Feng, S\'ebastien Lahaie, Jon Schneider, Jinchao Ye
---
最新提交年份:
2020
---
分类信息:
一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        
机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
---
英文摘要:
  The display advertising industry has recently transitioned from second- to first-price auctions as its primary mechanism for ad allocation and pricing. In light of this, publishers need to re-evaluate and optimize their auction parameters, notably reserve prices. In this paper, we propose a gradient-based algorithm to adaptively update and optimize reserve prices based on estimates of bidders' responsiveness to experimental shocks in reserves. Our key innovation is to draw on the inherent structure of the revenue objective in order to reduce the variance of gradient estimates and improve convergence rates in both theory and practice. We show that revenue in a first-price auction can be usefully decomposed into a \emph{demand} component and a \emph{bidding} component, and introduce techniques to reduce the variance of each component. We characterize the bias-variance trade-offs of these techniques and validate the performance of our proposed algorithm through experiments on synthetic data and real display ad auctions data from Google ad exchange. 
---
PDF链接:
https://arxiv.org/pdf/2006.06519