摘要翻译:
本文在原点O是唯一内奇点且f2=0是不可约二次曲线的假设下,计算了(2,5)型环面曲线C的Alexander多项式,C:f(x,y)=f2(x,y)^5+F5(x,y)^2=0。证明了只要C是不可约的,则Alexander多项式与一般环面曲线的Alexander多项式是相同的。
---
英文标题:
《On Alexander Polynomials of Certain (2,5) Torus Curves》
---
作者:
M. Kawashima, M. Oka
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper, we compute Alexander polynomials of a torus curve C of type (2, 5), C : f(x, y) = f_2(x, y)^5 + f_5(x, y)^2 = 0, under the assumption that the origin O is the unique inner singularity and f2 = 0 is an irreducible conic. We show that the Alexander polynomial remains the same with that of a generic torus curve as long as C is irreducible.
---
PDF链接:
https://arxiv.org/pdf/0810.1382