全部版块 我的主页
论坛 经济学人 二区 外文文献专区
750 0
2022-04-10
摘要翻译:
提出了一种新的基于点的Dec-POMDP近似规划方法,该方法在求解质量方面优于现有的近似规划方法。它使用先验信念概率的启发式估计来选择一定数量的策略树:这种选择被表述为一个组合优化问题,使剪枝引起的误差最小。
---
英文标题:
《Distribution over Beliefs for Memory Bounded Dec-POMDP Planning》
---
作者:
Gabriel Corona, Francois Charpillet
---
最新提交年份:
2012
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  We propose a new point-based method for approximate planning in Dec-POMDP which outperforms the state-of-the-art approaches in terms of solution quality. It uses a heuristic estimation of the prior probability of beliefs to choose a bounded number of policy trees: this choice is formulated as a combinatorial optimisation problem minimising the error induced by pruning.
---
PDF链接:
https://arxiv.org/pdf/1203.3474
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群