摘要翻译:
提出并分析了一般半无限凸优化问题的中心切割曲面算法,并利用该算法对不确定性集由矩有界的概率分布组成的分布鲁棒优化问题提出了一种新的算法。任意阶矩以及非多项式矩都可以包括在公式中。我们证明了这会产生一个风险厌恶程度递减的优化问题层次,经典鲁棒优化在谱的一端,随机规划在谱的另一端。虽然我们的主要动机是解决具有矩不确定性的分布鲁棒优化问题,但一般半无限凸规划的切割面方法也是一个独立的兴趣。该方法适用于由无限维索引集索引的不可微半无限约束问题。算例表明,即使在求解约束可微且由低维索引集索引的传统半无限凸规划问题时,该算法仍具有潜在的应用潜力,并与Kortanek和No的中心切割平面算法进行了比较。通过对切割曲面算法收敛速度的分析,我们将作者提出的矩匹配场景生成算法推广为一种概率算法,该算法在满足矩约束的前提下寻找最优的概率分布。这种分布优化方法和中心切割面算法的结合产生了一系列分布鲁棒优化问题的解决方案,这些问题比目前提出的问题更加普遍。
---
英文标题:
《A cutting surface algorithm for semi-infinite convex programming with an
application to moment robust optimization》
---
作者:
Sanjay Mehrotra, David Papp
---
最新提交年份:
2014
---
分类信息:
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Portfolio Management 项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--
---
英文摘要:
We present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop a novel algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. Moments of arbitrary order, as well as non-polynomial moments can be included in the formulation. We show that this gives rise to a hierarchy of optimization problems with decreasing levels of risk-aversion, with classic robust optimization at one end of the spectrum, and stochastic programming at the other. Although our primary motivation is to solve distributionally robust optimization problems with moment uncertainty, the cutting surface method for general semi-infinite convex programs is also of independent interest. The proposed method is applicable to problems with non-differentiable semi-infinite constraints indexed by an infinite-dimensional index set. Examples comparing the cutting surface algorithm to the central cutting plane algorithm of Kortanek and No demonstrate the potential of our algorithm even in the solution of traditional semi-infinite convex programming problems whose constraints are differentiable and are indexed by an index set of low dimension. After the rate of convergence analysis of the cutting surface algorithm, we extend the authors\' moment matching scenario generation algorithm to a probabilistic algorithm that finds optimal probability distributions subject to moment constraints. The combination of this distribution optimization method and the central cutting surface algorithm yields a solution to a family of distributionally robust optimization problems that are considerably more general than the ones proposed to date.
---
PDF下载:
-->