作者:俊欣
来源:关于数据分析与可视化
今天我们继续来讲一下Pandas和SQL之间的联用,我们其实也可以在Pandas当中使用SQL语句来筛选数据,通过Pandasql模块来实现该想法,首先我们来安装一下该模块
pip install pandasql要是你目前正在使用jupyter notebook,也可以这么来下载
!pip install pandasql 导入数据我们首先导入数据
output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
我们先对导入的数据集做一个初步的探索性分析,
df.info()output
再开始进一步的数据筛选之前,我们再对数据集的列名做一个转换,代码如下
用SQL筛选出若干列来我们先尝试筛选出OrderID、Quantity、Sales_Manager、Status等若干列数据,用SQL语句应该是这么来写的
SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address, ShippingCost_USD FROM df 与Pandas模块联用的时候就这么来写
query = "SELECT OrderID, Quantity, Sales_Manager,Status, Shipping_Address, ShippingCost_USD FROM df" df_orders = sqldf(query) df_orders.head() output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
SQL中带WHERE条件筛选我们在SQL语句当中添加指定的条件进而来筛选数据,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya'" df_kenya = sqldf(query) df_kenya.head() output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
而要是条件不止一个,则用AND来连接各个条件,代码如下
query = "SELECT * FROM df_orders WHERE Shipping_Address = 'Kenya' AND Quantity < 40 AND Status IN ('Shipped', 'Delivered')"df_kenya = sqldf(query)df_kenya.head() output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
分组同理我们可以调用SQL当中的GROUP BY来对筛选出来的数据进行分组,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address"df_group = sqldf(query)df_group.head(10) output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
排序而排序在SQL当中则是用ORDER BY,代码如下
query = "SELECT Shipping_Address, COUNT(OrderID) AS Orders FROM df_orders GROUP BY Shipping_Address ORDER BY Orders"df_group = sqldf(query)df_group.head(10) output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
数据合并我们先创建一个数据集,用于后面两个数据集之间的合并,代码如下
query = "SELECT OrderID, Quantity, Product_Code, Product_Category, UnitPrice_USD FROM df" df_products = sqldf(query) df_products.head() output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
我们这里采用的两个数据集之间的交集,因此是INNER JOIN,代码如下
query = "SELECT T1.OrderID, T1.Shipping_Address, T2.Product_Category FROM df_orders T1 INNER JOIN df_products T2 ON T1.OrderID = T2.OrderID" df_combined = sqldf(query) df_combined.head() output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">
与LIMIT之间的联用在SQL当中的LIMIT是用于限制查询结果返回的数量的,我们想看查询结果的前10个,代码如下
query = "SELECT OrderID, Quantity, Sales_Manager, Status, Shipping_Address, ShippingCost_USD FROM df LIMIT 10"df_orders_limit = sqldf(query)df_orders_limit output
SQL来查询数据,效率超高" class="syl-page-img" style="border: none; margin-top: 20px; max-; height: auto;">