虽然XPFSA是生成模型,但对方向依赖程度进行标量量化是有用的。4.1.3方向依赖度第一作者的早期工作[34]中介绍了概率自动机空间上同步合成的二进制操作,用于初始标记PFSA。我们修改了定义,将其应用于遍历平稳QSP的PFSA表示,其中初始状态不重要。定义19(概率自动机的同步合成)。设G=(Q,∑,δ,eπ)是平稳遍历CQSP的PFSA表示。设H=(Q,∑,δ)表示强连通的directedgraph,使得qi是节点集,并且齐,qj∈ Q、 有一条有向边-→ qj,用σ标记∈ ∑,当且仅当δ(qi,σ)=qj。让G= (Q×Q,∑,δ),eπ) 成为PFSA,相关功能定义如下:气∈ Q、 qj∈ Q、 σ∈ Σ,(δ((qi,qj),σ)=(δ(qi,σ),δ(qj,σ))eπ((qi,qj),σ)=eπ(qi,σ)(96)然后G,H的同步合成,表示为G H、 G的任意强连通分量.我们证明了定义19是一致的,即G的任何两个强连通分量在结构上是同构的。引理14(同步合成的充分必要性)。让, G是G的两个强连通分量, 如定义19中所述。然后,我们有:1)G和G在结构上是同构的。qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ6的1.0 0 0 0.0 0.9σ,0.9σ0.9,0.9σ0.9σ0 0.9σ0 0 0.0 0.9σ0 0 0 0 0.9σ0 0 0 0 0 0.9σ0 0 0 0 0 0 0 0 0 0 0 0.9σ0 0 0 0.9σ0 0 0 0 0 0 0 0 0.9σ0 0 0 0 0 0 0 0 0 0.9σ0 0 0 0 0 0 0 0 0 0.9σ0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ6 6 5σ0 | 0.13q1q2σ1 | 0.31σ0 | 0.69σ1 | 0.28σ0 | 0.72GHG 嗯 游戏打得好啊GFig。5.同步和投影合成的插图。