全部版块 我的主页
论坛 经济学人 二区 外文文献专区
604 26
2022-05-12
英文标题:
《An importance sampling approach for copula models in insurance》
---
作者:
Philipp Arbenz, Mathieu Cambou and Marius Hofert
---
最新提交年份:
2015
---
英文摘要:
  An importance sampling approach for sampling copula models is introduced. We propose two algorithms that improve Monte Carlo estimators when the functional of interest depends mainly on the behaviour of the underlying random vector when at least one of the components is large. Such problems often arise from dependence models in finance and insurance. The importance sampling framework we propose is general and can be easily implemented for all classes of copula models from which sampling is feasible. We show how the proposal distribution of the two algorithms can be optimized to reduce the sampling error. In a case study inspired by a typical multivariate insurance application, we obtain variance reduction factors between 10 and 30 in comparison to standard Monte Carlo estimators.
---
中文摘要:
介绍了copula模型抽样的一种重要抽样方法。当感兴趣的函数主要取决于基本随机向量的行为时,当至少一个分量较大时,我们提出了两种改进蒙特卡罗估计的算法。这类问题通常源于金融和保险业中的依赖模型。我们提出的重要性抽样框架是通用的,可以很容易地应用于所有类别的copula模型,从中抽样是可行的。我们展示了如何优化这两种算法的建议分布,以减少采样误差。在一个典型的多变量保险应用启发下的案例研究中,与标准蒙特卡罗估计相比,我们得到了10到30之间的方差缩减因子。
---
分类信息:

一级分类:Statistics        统计学
二级分类:Computation        计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Quantitative Finance        数量金融学
二级分类:Risk Management        风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-5-12 00:37:13
InsurancePhilipp-Arbenz中copula模型的一种重要抽样方法*, Mathieu Cambou+,Marius Hoffert2015年4月7日摘要介绍了copula模型抽样的一种重要抽样方法。我们提出了两种算法,当感兴趣的函数主要取决于基本随机向量的行为时,当至少一个分量较大时,改进蒙特卡罗估计。这些问题通常来自金融和保险中的依赖模型。我们提出的ImportancesSampling框架是通用的,可以很容易地应用于所有类别的copula模型,从中可以进行采样。我们展示了如何优化这两种算法的建议分布,以减少采样误差。在一个典型的多变量保险应用启发下的案例研究中,我们得到了与标准蒙特卡罗估值器相比,在10到30之间的方差缩减因子。关键词:Copula,依赖模型,重要性抽样,保险,风险度量,taileven1简介许多保险应用,参见我们的动机第2节,导致计算形式为E[ψ(X)]的函数的问题,其中X=(X,…,Xd):Ohm → RDI是概率空间上的随机向量(Ohm, F、 P)和ψ:Rd→ R是一个可测函数。如果不能假设X的分量是独立的,那么通常用copula来模拟X的分布,比如p[X]≤ 十、除息的≤ xd]=C(FX(x),FXd(xd)),x∈ 其中FXj(x)=P[Xj≤ x] ,j=1,d、 是边际累积分布函数(cdf)和C:[0,1]d→ [0,1]是一个连接词。copula可以将依赖结构从边缘分布中分离出来,这有助于构建多元随机模型。我们假设读者对连词有基本的了解,并参考麦克尼尔等人。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-12 00:37:16
(2005)或尼尔森(2006)的介绍。估计E[ψ(X)]的常用方法是通过蒙特卡罗模拟。在精算实践中,通常一组低概率的X的结果对E[ψ(X)]有很大的贡献。在这种情况下,重要性抽样可以增加该集合中的样本数。通过加权方法,可以得到方差减小的无偏估计量。*SCOR全球P&C,Guisan Quai将军26号,瑞士兹里希8022号:philipp。arbenz@gmail.com+瑞士洛桑1015号EPFL 8号站数学研究所:mathieucambou@gmail.com加拿大滑铁卢大学统计与精算科学系:马吕斯。hofert@uwaterloo.caAnGlasserman和Li(2005)以及Huanget al.(2010)分别对Gauss copula和Bee(2011)的绝对连续copula进行了研究。这些论文的灵感来自金融应用中的copula模型,并假设copula是高斯函数或具有已知密度。然而,保险中使用的连接词往往偏离这些假设。本文的主要贡献是研究了不依赖特定copula结构的重要抽样技术。我们考虑的情况是,当至少一个分量较大时,感兴趣的函数ψ主要取决于随机向量X的行为。此类问题通常来自金融和保险领域的依赖模型,其中涉及重尾分布的扭曲预期。我们为这个设置提出了一个新的重要抽样框架,它可以用于所有类别的copula模型,从中抽样是可行的。本文的组织结构如下。在第2节激励我们的工作之后,我们将在第3节介绍重要性抽样方法。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-12 00:37:21
第4节介绍拒绝采样算法,第5节介绍直接采样算法。对于每一个问题,我们展示了建议分布的抽样、重要性抽样权重的计算,并讨论了建议分布的最佳选择。第6节讨论了我们的算法在罕见事件环境下的效率。第7节给出了一个案例研究,第8节得出结论。2动机在copula模型中,我们可以写成[ψ(X)]=E[ψ(U)],其中U=(U,…,Ud):Ohm → RDI是一个具有分布函数C,ψ:[0,1]d的随机向量→ R定义为ψ(u,…,ud)=ψF-1X(u),F-1Xd(ud),和F-1Xj(p)=inf{x∈ R:FXj(x)≥ p} ,对于j=1,d、 如果C和裕度FXjare已知,我们可以使用蒙特卡罗模拟来估计E[ψ(U)]。对于U的随机样本{Ui:i=1,…,n},E[ψ(U)]的蒙特卡罗估计由un=nnXi=1ψ(Ui)给出。(2.1)在本文中,我们考虑的情况是,只有当其至少一个参数为1时,ψ才是大的,或者如果X的至少一个分量是大的,则是等价的。这一假设受到了保险业若干应用的启发,如以下示例所示:o具有免赔额T的止损险的公平保费为EhmaxnPdj=1Xj- T、 0oi。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-12 00:37:24
相应的函数为ψ(u)=maxnPdj=1F-1Xj(uj)-T、 0o;关于两个帕累托边缘的ψ等高线图,参见图1的左侧总体S=Pdj=1Xj的风险度量,如风险价值、VaRα或预期短缺、ESα、α∈ (0,1),一般不能写成E型期望[ψ(X)]。然而,它们是聚合分布函数FS(x)=P[S]的泛函≤ x] =E[ψ(x)(U)],其中ψ(x)(x)∈ R) 指示函数ψ(x)(u)=1F-1X(u)+··+F-1Xd(ud)≤ 十、.保险3u1u20中copula模型的一种重要抽样方法。0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.21512051010020050010005000图1:左:超额函数的等高线ψ(u,u)=max{F-1X(u)+F-1X(u)- 10,0},其中利润率是帕累托分布,FX(x)=1-(1+x/4)-2和FX(x)=1-(1+x/8)-2.灰色区域表示ψ为零的位置。右:乘积函数ψ(u,u)=F的等高线-1X(u)F-1X(u),其中X~ LN(2,1)和X~ LN(1,1.5)。因此,我们可以将rα(S)=infnx写入∈ R:E[ψ(x)(U)]≥ αo,ESα(S)=1- αZαVaRu(S)du,它只依赖于E[ψ(x)(U)]≥ α保持不变。这是由S的尾行为决定的,当至少一个音调分量接近1时,它强烈地受到copula C属性的影响。请注意,资本分配方法,如预期缺口的Euler原则,表现类似,见Tasche(2008)和McNeil等人(2005),第260页计算两个正重尾随机变量xandx的协方差(或相关性)需要计算E[XX]。隐含的泛函是ψ(u,u)=F-1X(u)F-1X(u)。对数正态(LN)裕度的ψ等高线图如图1右侧所示。与前面的例子相比,这个ψ不仅取决于(X,X)的尾部行为。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-5-12 00:37:27
然而,当至少一个参数接近1时,E[ψ(U)]主要取决于copula行为,因为在这种情况下,ψ变大。请注意,在这个框架中,我们遵循(McNeil等人,2005年,备注2.1)的约定,即外部参照是指损失和-在精算背景下,这一点更为常见。人们也可以很好地处理损益随机变量-通过将感兴趣的区域更改为X的分量较小的区域。3重要性抽样重要性抽样背后的理念是从不同于目标分布C的提案分布Fv中抽样。提案分布将更多样本集中在该区域,从而对E[ψ(U)]做出更大贡献。通过适当的加权方法,可以得到方差较低的无偏估计量。假设所考虑的函数ψ在上述类别中:如果至少有一个参数接近1,则ψ是大的。在这种情况下,估计器unin(2.1)的一个缺点是,保险中copula模型的重要抽样方法通常,对于许多样本Ui,没有一个分量接近1。因此,大多数样本位于低兴趣区域。因此,即使n很大,uncan的估计误差也会很大。设V=(V,…,Vd):Ohm → [0,1]d注意一个随机向量的分布函数FV。我们可以重写积分E[ψ(U)]asE[ψ(U)]=Z[0,1]dψ(U)dC(U)=Z[0,1]dψ(U)dC(U)dFV(U)dFV(U)=Eψ(V)dC(V)dFV(V), (3.1)式中,dC/DFV表示C相对于FV的氡-Nikodym导数。Radon–Nikodym导数存在的充要条件是copula C相对于FV是绝对连续的。我们将在本节后面提供有关此问题的更多详细信息。如果C和fV与Lebesgue测量的密度C和fV绝对连续,则氡-尼科德姆导数C/dFVis只是密度C/fV的比值。身份证。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群