英文标题:
《L\\\'evy-Vasicek Models and the Long-Bond Return Process》
---
作者:
Dorje C. Brody, Lane P. Hughston, and David M. Meier
---
最新提交年份:
2016
---
英文摘要:
The classical derivation of the well-known Vasicek model for interest rates is reformulated in terms of the associated pricing kernel. An advantage of the pricing kernel method is that it allows one to generalize the construction to the L\\\'evy-Vasicek case, avoiding issues of market incompleteness. In the L\\\'evy-Vasicek model the short rate is taken in the real-world measure to be a mean-reverting process with a general one-dimensional L\\\'evy driver admitting exponential moments. Expressions are obtained for the L\\\'evy-Vasicek bond prices and interest rates, along with a formula for the return on a unit investment in the long bond, defined by $L_t = \\lim_{T \\rightarrow \\infty} P_{tT} / P_{0T}$, where $P_{tT}$ is the price at time $t$ of a $T$-maturity discount bond. We show that the pricing kernel of a L\\\'evy-Vasicek model is uniformly integrable if and only if the long rate of interest is strictly positive.
---
中文摘要:
著名的Vasicek利率模型的经典推导是根据相关的定价核进行重新表述的。定价核方法的一个优点是,它允许我们将构造推广到L挈evy-Vasicek情况,避免了市场不完全性的问题。在勒维-瓦西塞克模型中,实际测量中的短期利率是一个均值回复过程,一般的一维勒维驱动因素承认指数矩。获得了列维-瓦西塞克债券价格和利率的表达式,以及长期债券单位投资回报率的公式,由美元L\\u t=\\lim\\u{t\\rightarrow\\infty}P\\u{tT}/P\\u{0T}美元定义,其中美元P\\u{tT}美元是美元t$到期贴现债券的价格。我们证明了当且仅当长期利率严格为正时,Levy-Vasicek模型的定价核是一致可积的。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->