全部版块 我的主页
论坛 经济学人 二区 外文文献专区
529 19
2022-06-02
英文标题:
《Correlation structure and principal components in global crude oil
  market》
---
作者:
Yue-Hua Dai (ECUST), Wen-Jie Xie (ECUST), Zhi-Qiang Jiang (ECUST),
  George J. Jiang (WSU), Wei-Xing Zhou (ECUST)
---
最新提交年份:
2014
---
英文摘要:
  This article investigates the correlation structure of the global crude oil market using the daily returns of 71 oil price time series across the world from 1992 to 2012. We identify from the correlation matrix six clusters of time series exhibiting evident geographical traits, which supports Weiner\'s (1991) regionalization hypothesis of the global oil market. We find that intra-cluster pairs of time series are highly correlated while inter-cluster pairs have relatively low correlations. Principal component analysis shows that most eigenvalues of the correlation matrix locate outside the prediction of the random matrix theory and these deviating eigenvalues and their corresponding eigenvectors contain rich economic information. Specifically, the largest eigenvalue reflects a collective effect of the global market, other four largest eigenvalues possess a partitioning function to distinguish the six clusters, and the smallest eigenvalues highlight the pairs of time series with the largest correlation coefficients. We construct an index of the global oil market based on the eigenfortfolio of the largest eigenvalue, which evolves similarly as the average price time series and has better performance than the benchmark $1/N$ portfolio under the buy-and-hold strategy.
---
中文摘要:
本文利用1992年至2012年全球71个油价时间序列的日收益率,研究了全球原油市场的相关结构。我们从相关矩阵中确定了六组具有明显地理特征的时间序列,这支持Weiner(1991)的全球石油市场区域化假设。我们发现,时间序列的簇内对具有高度相关性,而簇间对具有相对较低的相关性。主成分分析表明,相关矩阵的大多数特征值都位于随机矩阵理论的预测范围之外,这些偏离特征值及其对应的特征向量包含着丰富的经济信息。具体而言,最大特征值反映了全球市场的集体效应,其他四个最大特征值具有区分六个集群的分区函数,最小特征值突出了相关系数最大的时间序列对。我们基于最大特征值的特征值Fortfolio构建了一个全球石油市场指数,该指数与平均价格时间序列的演化过程类似,在买入持有策略下,其表现优于基准1美元/牛美元投资组合。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-6-2 09:48:51
全球原油市场的相关结构和主成分岳华岱,谢文杰,b,姜志强,乔治J.蒋C,周伟兴,b,*华东理工大学商学院,上海200237,华东理工大学数学系,上海200237,华盛顿州立大学金融与管理科学系,普尔曼,美国摘要本文利用1992年至2012年全球71个油价时间序列的日收益率,研究了全球原油市场的相关结构。我们从相关矩阵中确定了六组时间序列,显示了明显的地理特征,这支持Weiner(1991)的全球石油市场区域化假设。我们发现,时间序列的簇内对具有高度相关性,而簇间对具有相对较低的相关性。主成分分析表明,相关矩阵的大多数特征值都位于随机矩阵理论的预测范围之外,这些偏离特征值及其对应的特征向量包含着丰富的经济信息。具体而言,最大特征值反映全球市场的集体效应,其他四个最大特征值具有区分六个集群的分配函数,最小特征值显示具有最大相关系数的时间序列对。我们基于最大特征值的特征值Fortfolio构建了一个全球石油市场指数,该指数与平均价格-时间序列演化相似,在买入持有策略下的表现优于基准1/N投资组合。JEL分类:G1、C15关键词:原油、主成分分析、相关结构、区域化、地理信息、特征1。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-2 09:48:54
原油是现代工业社会的生命之血,是一种独特的战略资源,对任何经济体都至关重要。原油价格是由供需不平衡以及这种不平衡的不确定性所驱动的,这种不平衡会导致投机增加(Alvarez-Ramirez等人,2002;He等人,2009;Kaufmann-andUllman,2009;Sornette等人,2009)。有大量文献致力于研究原油价格的动态及其相互关系。相当一部分文献关注不同地区油价的联动和趋同。阿德尔曼(1984)声称,全球原油市场被统一为“一个大池”。相反,韦纳(1991)认为原油市场是区域化的,这挑战了阿德尔曼(1984)的“一个大池”假设。这两个相互竞争的假设引发了许多争论和广泛的研究(Rodriguez和Williams,1993;Weiner,1993;Rodriguez和Williams,1994)。大多数实证研究都支持“一大池”假说。在这方面,采用了不同的计量经济学方法,并隐含地假设了不同的市场统一“定义”。Sauer(1994)将协整关系纳入多变量时间序列模型,以检验全球原油进口市场的区域化程度,并发现实证结果支持Adelman(1984)的“一个大油池”主张。G¨ulen(1997、1999)对三组质量相似的原油的月度和每周价格的共同变动进行协整检验,发现1980-1995年期间世界原油市场是统一的,拒绝了区域化假设。Bentzen(2007)发现了这些主要原油之间的双向因果关系*通讯作者。地址:P.O.梅隆路130号。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-2 09:48:58
华东理工大学商学院114号信箱,中国上海200237,电话:+86 21 64253634。电子邮件地址:george。jiang@wsu.edu(乔治·J·蒋),wxzhou@ecust.edu.cn(周卫兴)2014年5月21日向爱思唯尔提交了预印本Prices(欧佩克、布伦特和WTI),并辩称全球石油市场的区域化假设因此被驳回。Fattouh(2010)使用Caner和Hansen(2001)的两种制度阈值自回归(TAR)方法研究了原油价格差异的动态,并找到了调整过程中对长期均衡的阈值影响的有力证据。由于原油价格是相互关联的,Fattouh(2010)认为,石油市场在非常普遍的层面上是“一个大池”。Rebredo(2011)使用copulas检验了原油基准价格之间的依赖结构,并找到了原油价格之间显著对称的上下尾部依赖的证据。他指出,在牛市和熊市期间,原油价格的关联强度相同,因此支持“一个大池”假设,而不是区域化假设。考夫曼(Kaufmann)和乌尔曼(Ullman)(2009)认为,如果世界石油市场是统一的,那么世界石油价格没有创新进入市场的空间,不同原油的价格之间也没有因果关系。他们指出,变化可能首先出现在一种或多种基准原油的价格上,然后蔓延到全球市场。他们发现了从基准标记到其他原油市场的格兰杰因果关系证据。Akhmedjonov和Lau(2012)使用指数平滑自回归增强Dickey-Fuller单位根检验研究了83个俄罗斯地区四种能源产品的月度能源价格,未发现俄罗斯国家能源市场完全一体化的证据。Liu等人。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-2 09:49:01
(2013)通过使用阈值误差修正模型和从基准市场到中国石油市场的单向波动溢出,研究中国和四大原油市场之间的整合,研究区域化问题。他们的结果不支持“一个大池”的假设。我们的工作通过主成分分析(Jolli ffe,2002)和随机矩阵理论(Mehta,2006)揭示了全球原油市场的相关结构,为这篇文献做出了贡献。主成分分析已广泛应用于金融领域(例如,见Kritzman et al.,2011;Billio et al.,2012以及其中的参考文献)。然而,主成分分析在能源市场研究中的应用较少。Chantziara和Skiadopoulos(2008)对纽约商品交易所的原油、取暖油和汽油价格以及国际石油交易所的原油期货进行了主成分分析,并表明保留的主成分在预测价格方面的能力有限。另一方面,随机矩阵理论已广泛应用于研究多个金融时间序列(Laloux et al.,1999;Plerou et al.,1999;Kwapien and Drozdz,2012)。随机矩阵理论本质上等价于主成分分析,因为它们都处理相关矩阵及其特征值。在随机矩阵理论的框架下,如果实时序列的特征值与随机矩阵理论的预测不同,那么这些偏离的特征值中必然存在隐藏的经济信息。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-2 09:49:04
对于股票市场,存在多个偏离特征值,其中最大特征值反映整个市场的集体效应,其他最大特征值可用于识别工业部门(Plerou et al.,2002)或具有强互相关的股票集群(Shen和Zheng,2009)。可以为住房市场Meng et al.(2014)和全球股票市场Song et al.(2011)提取不同的信息。此类分析使我们能够发现市场驱动力(Shapira等人,2009)以及相互和共同影响(Garas和Argyrakis,2007)。我们利用来自不同国家的71个现货价格时间序列,运用主成分分析和随机矩阵理论研究了全球原油市场的相关结构。我们能够识别出六组具有明显地理特征的油价时间序列。这一发现支持Weiner(1991)的区域化假设。我们还从偏离特征值中提取了丰富的经济信息,这表明全球原油市场具有非常明显的相关结构。本文的其余部分组织如下。第2节描述了数据集并给出了汇总统计数据。第3节研究了全球原油市场的相互关联结构。第四节研究了相关矩阵,探讨了嵌入主成分和最小特征值中的经济信息内容。我们在第二节得出结论。5.2. 数据说明2.1。数据集我们从彭博社数据库中检索到全球各市场原油每日现货价格时间序列71。现货价格时间序列涵盖从1992年10月到2012年12月的一段时间。这些原油价格时间序列在几个方面有所不同。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群