英文标题:
《Simulation Methods for Stochastic Storage Problems: A Statistical
Learning Perspective》
---
作者:
Michael Ludkovski and Aditya Maheshwari
---
最新提交年份:
2018
---
英文摘要:
We consider solution of stochastic storage problems through regression Monte Carlo (RMC) methods. Taking a statistical learning perspective, we develop the dynamic emulation algorithm (DEA) that unifies the different existing approaches in a single modular template. We then investigate the two central aspects of regression architecture and experimental design that constitute DEA. For the regression piece, we discuss various non-parametric approaches, in particular introducing the use of Gaussian process regression in the context of stochastic storage. For simulation design, we compare the performance of traditional design (grid discretization), against space-filling, and several adaptive alternatives. The overall DEA template is illustrated with multiple examples drawing from natural gas storage valuation and optimal control of back-up generator in a microgrid.
---
中文摘要:
我们考虑通过回归蒙特卡罗(RMC)方法解决随机存储问题。从统计学习的角度出发,我们开发了动态仿真算法(DEA),该算法将现有的不同方法统一到一个模块化模板中。然后,我们研究了构成DEA的回归架构和实验设计的两个核心方面。对于回归部分,我们讨论了各种非参数方法,特别介绍了高斯过程回归在随机存储环境中的使用。对于模拟设计,我们比较了传统设计(网格离散化)、空间填充和几种自适应方案的性能。以微电网天然气储量评估和备用发电机优化控制为例,说明了整个DEA模板。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
PDF下载:
-->