英文标题:
《A new time-varying model for forecasting long-memory series》
---
作者:
Luisa Bisaglia and Matteo Grigoletto
---
最新提交年份:
2018
---
英文摘要:
In this work we propose a new class of long-memory models with time-varying fractional parameter. In particular, the dynamics of the long-memory coefficient, $d$, is specified through a stochastic recurrence equation driven by the score of the predictive likelihood, as suggested by Creal et al. (2013) and Harvey (2013). We demonstrate the validity of the proposed model by a Monte Carlo experiment and an application to two real time series.
---
中文摘要:
在这项工作中,我们提出了一类新的具有时变分数参数的长记忆模型。特别是,长记忆系数d$的动力学是通过由预测可能性得分驱动的随机递归方程确定的,正如Creal et al.(2013)和Harvey(2013)所建议的那样。通过蒙特卡罗实验和对两个实时序列的应用,验证了该模型的有效性。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->