英文标题:
《The Applications of Graph Theory to Investing》
---
作者:
Joseph Attia
---
最新提交年份:
2019
---
英文摘要:
How can graph theory be applied to investing in the stock market? The answer may help investors realize the true risks of their investments, help prevent recessions like that of 2008, and increase financial literacy amongst students. Using several original Python programs, we take a correlation matrix with correlations between the stock prices and then transform that into a graphable binary adjacency matrix. From this graph, we take a graph in which each edge represents weak correlations between two stocks. Finding the largest complete graph will produce a diversified portfolio. Numerous trials have shown that diversified portfolios consistently outperform the market during times of economic stability, but undiversified portfolios prove to be riskier and more unpredictable, either producing huge profits or even larger losses. Furthermore, once deciding among which stocks our portfolio would consist of, how do we know when to invest in each stock to maximize profits? Can taking stock price data and shifting values help predict how a stock will perform today if another stock performs a certain way n days prior? It was found that this method of predicting the optimal time to investment failed to improve returns when based solely on correlations. Although a trial with random stocks with varied correlations produced more profits than continuously investing.
---
中文摘要:
如何将图论应用于股票市场投资?答案可能有助于投资者认识到他们投资的真正风险,有助于防止像2008年那样的衰退,并提高学生的金融素养。使用几个原始Python程序,我们获取一个具有股票价格之间相关性的相关矩阵,然后将其转换为一个可绘制的二进制邻接矩阵。从这个图中,我们得到一个图,其中每条边表示两支股票之间的弱相关性。找到最大的完整图将产生多样化的投资组合。无数试验表明,在经济稳定时期,多元化投资组合的表现始终优于市场,但事实证明,单一投资组合的风险更大,更不可预测,要么产生巨额利润,要么产生更大的亏损。此外,一旦决定了我们的投资组合将由哪些股票组成,我们如何知道何时投资每只股票以实现利润最大化?如果另一只股票在n天前以某种方式表现,获取股价数据和价值变动是否有助于预测该股票今天的表现?研究发现,当仅基于相关性时,这种预测最佳投资时间的方法无法提高回报。尽管对具有不同相关性的随机股票进行的试验比持续投资产生了更多的利润。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Discrete Mathematics 离散数学
分类描述:Covers combinatorics, graph theory, applications of probability. Roughly includes material in ACM Subject Classes G.2 and G.3.
涵盖组合学,图论,概率论的应用。大致包括ACM学科课程G.2和G.3中的材料。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->