全部版块 我的主页
论坛 经济学人 二区 外文文献专区
757 40
2022-06-25
英文标题:
《Modelling of dependence in high-dimensional financial time series by
  cluster-derived canonical vines》
---
作者:
David Walsh-Jones, Daniel Jones, Christoph Reisinger
---
最新提交年份:
2014
---
英文摘要:
  We extend existing models in the financial literature by introducing a cluster-derived canonical vine (CDCV) copula model for capturing high dimensional dependence between financial time series. This model utilises a simplified market-sector vine copula framework similar to those introduced by Heinen and Valdesogo (2008) and Brechmann and Czado (2013), which can be applied by conditioning asset time series on a market-sector hierarchy of indexes. While this has been shown by the aforementioned authors to control the excessive parameterisation of vine copulas in high dimensions, their models have relied on the provision of externally sourced market and sector indexes, limiting their wider applicability due to the imposition of restrictions on the number and composition of such sectors. By implementing the CDCV model, we demonstrate that such reliance on external indexes is redundant as we can achieve equivalent or improved performance by deriving a hierarchy of indexes directly from a clustering of the asset time series, thus abstracting the modelling process from the underlying data.
---
中文摘要:
我们通过引入集群衍生的规范藤(CDCV)copula模型来捕获金融时间序列之间的高维相关性,从而扩展了金融文献中的现有模型。该模型使用了简化的市场部门vine copula框架,类似于Heinen和Valdesogo(2008)以及Brechmann和Czado(2013)提出的框架,可以通过调整市场部门指数层次结构上的资产时间序列来应用该框架。虽然上述作者已经证明,这可以控制高维藤蔓连接函数的过度参数化,但他们的模型依赖于外部来源的市场和部门指数,由于对此类部门的数量和组成施加限制,限制了其更广泛的适用性。通过实施CDCV模型,我们证明了这种对外部指数的依赖是多余的,因为我们可以通过直接从资产时间序列的聚类中导出指数层次结构,从而从基础数据中抽象建模过程,从而实现同等或改进的性能。
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
PDF下载:
-->
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2022-6-25 11:58:58
高维金融时间序列依赖性的集群衍生规范vinesDavid Walsh-Jones建模*, Daniel Jones+,Christoph Reisinger2014年11月19日摘要我们通过引入集群衍生的规范藤(CDCV)copula模型来扩展金融文献中的现有模型,以捕获金融时间序列之间的高维相关性。该模型使用了一个简化的市场部门藤蔓copula框架,类似于Heinen和Valdesogo(2008)以及Brechmann和Czado(2013)提出的框架,该框架可以通过调整市场部门指数层次结构上的资产时间序列来应用。上述作者已经证明,这可以控制高维藤蔓连接函数的过度参数化,但他们的模型依赖于外部来源市场和部门指数的提供,由于对此类部门的数量和组成施加限制,限制了其更广泛的适用性。通过实现CDCVmodel,我们证明了这种对外部索引的依赖是多余的,因为我们可以通过直接从资产时间序列的聚类中导出索引层次结构来实现等效或改进的性能,从而从基础数据中抽象建模过程。1简介本文介绍了一种用于捕捉高维相关性的新模型,我们称之为集群衍生规范藤(CDCV)copula模型,该模型直接应用于大型金融资产组合的实际建模。虽然这种高级依赖模型的实施在金融行业并不常见,但更多的基本依赖模型并没有得到充分利用。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-25 11:59:01
能够从其他财务变量的角度描述给定财务变量的行为,使我们既能利用市场上可用数据的激增,又能在数据不可用时得出财务变量的代理。此外,当我们考虑金融变量的行为时,如篮子期权、股票组合或直接依赖于其组成变量的复杂信贷产品,我们显然需要一种方法,不仅要捕捉组成部分的边际行为,还要捕捉组成部分之间依赖结构的演变。获取这种多变量相关性的一个更基本的方法是multivariatecopula。copula首先作为一种统计工具被引入,它将给定的多变量分布分解为依赖结构和一组边际分布。尽管基于高斯copula的违约相关性模型[16]在2008年金融危机后受到负面影响(见[19]),但多元copula可以说已成为捕捉依赖性的行业标准。由于其能够捕捉金融变量的风格化特征,如厚尾,因此学生的t-copula尤其常用。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-25 11:59:05
然而,尽管*david@walsh-琼斯。com+丹尼尔。jones@maths.ox.ac.uk,牛津大学数学研究所,安德鲁·怀尔斯大厦,牛津伍德斯托克路,OX2 6GG,英国克里斯托夫。reisinger@maths.ox.ac.uk,牛津大学数学研究所,Andrew Wiles Building,Woodstock Road,OX2 6GG,United Kingdom广泛使用,此类参数化多元copula仍然存在一定程度的灵活性,因为它们本质上是“一种规模的函数”,可能无法完全捕捉给定多元依赖结构的细微差别。通过引入高度参数化的藤蔓连接函数(见[10,3]),在学术领域解决了这种灵活性,它将连接函数依赖结构分解为包含双变量连接函数的树集合。Vine连接函数使建模者能够选择不同的双变量连接函数来表示不同变量对之间的依赖关系。这具有更准确地捕获复杂和异构依赖结构的显著优势,并提供了更广泛的双变量copula,用于捕获尾部依赖等特征。vine copula文献最近的增长可追溯到论文“多重依赖的成对copula构造”[1],该论文基于[10]和[3]的工作,首先将vine copula的介绍带到了文献的最前沿,其次,通过说明如何构建vine copula模型并将其与数据相匹配,给定一组边际分布和一系列条件对copula。然而,由于需要拟合多达m(m- 1) /2 m维模型中的二元copula。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-25 11:59:08
即使使用最新的计算技术,模型拟合过程也很快在更高维度上变得可行。为了克服这种维数灾难,人们提出了许多技术。最直接的方法是藤蔓简化或截断,如【9】、【15】和【5】等所述。这种方法本质上近似于藤蔓连接函数,利用了后期藤蔓树对建模依赖结构的最小贡献。其次,这类市场部门Vine Copula模型(如[9]中的CAVA模型和[5]中的RVMS模型)旨在通过引入预先存在的市场部门指数层次结构(如标准普尔500)来显著降低Vine Copula的实施成本,在简化部门间依赖性假设的情况下,这些要素可能会受到限制。通过在这些指数时间序列上调整资产时间序列,此类模型通过限制需要拟合的树的数量来实现固定的模型精度水平,从而使藤蔓连接函数的灵活性能够应用于更高维度的投资组合。最后,由【4、6、13、18、11】进行的重新研究以与我们自己的研究类似的精神,寻求开发不依赖于外部来源层次的层次藤蔓模型。例如,[6]使用因子分析来开发潜在因素,然后在使用截短的R-藤连接函数来捕获元素之间剩余的特质依赖之前,所有元素都以这些潜在因素为条件。[18]的方法同样使用因子分析来推导C-Vine copula树的根节点。作者并不寻求按照市场部门葡萄连接词的风格对元素的总体进行细分或聚类,而是利用所有元素共同的潜在因素。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2022-6-25 11:59:11
最近,[13]和[11]提出并定义了双因素copula模型,当我们有许多分为组的变量时,可以使用该模型,从而自然地将[9,5]的市场部门层次结构与市场和部门组的潜在因素的推导结合起来。我们对CDCV模型的研究和开发也受到了[9]和[5]的市场部门藤Copula模型的推动,该模型侧重于利用特定外部引入的市场部门层次结构的示例。目前尚不清楚这些模型在多大程度上可以应用于其他数据集;模型性能是否因使用的外部指标而异;部门的规模、数量或构成是否影响模型性能;依赖结构和模型性能是否随时间变化,甚至是否始终适合或可能使用此类外部指标。我们通过引入CDCV模型扩展了这类模型,该模型反映了最近提出的双因素copula模型[11],用衍生变量分别替换了CAVA和RVMS模型的外部来源的标准普尔500指数和欧洲斯托克50指数。CDCV模型的另一个特点是,我们可以将这种市场部门层次结构应用于任何数据集,而不管这些数据是否已经分组为明显的细分市场或集群。我们通过对数据应用聚类和指数构建方法来实现这一点,这使得最终的市场集群层次结构在时间上发生变化,并允许变量在集群之间移动。因此,CDCV模型的衍生聚类指数代表了元素的离散动态聚类,这些元素可能被视为类似于金融背景下的子投资组合或交易账簿。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群