1# bzwy2011
过二项式求期权价格的时候书中举了一个例子:(来自:Financial Modeling 3rd edition Simon)
“There is one period and two dates; date 0 represents today and date 1 is one year from now.
• There are two “fundamental” assets: a stock and a bond. There is also a derivative asset, a call option written on the stock.
• The stock price today is $50. At date 1 it will either go up by 10 percent or go down by 3 percent.
• The one-period interest rate is 6 percent.
• The call option matures at date 1 and has exercise price X = $50.
"
而后就如何求 call option's price的时候,有这样一个假设
" to price the call option, we do so by showing that there is a combination of the bonds and stocks that exactly replicate the call option's payoffs"
于是supporse find A shares of the stock, and B bonds , such that
方程1: 一个period后,若股票涨的价格 * A + bond一个period后价格 * B = 涨的情况下的期权收益(55 - 50)
方程2:一个period后,若股票跌后价格 * A + bond一个period后价格 * B = 跌的情况下的期权收益( 0 bcz S price < exercise price)
两个方程可解得A和B,
而后反推可以求得call option 的价格 = the cost of replicate its payout.
求教:
问题1: 前面加黑句子的依据是什么? 为什么通过这种方式可以replicate 期权的收益?
答:依据是复制原理,由于期权的价值不好通过未来流量折现的方法求得,所以只好构造一个组合,该组合的未来收益模式和期权是一致的,而该组合的成本相对来说比较好算,这样可以间接地得到期权的价值。
问题2: 请教二项式股价模型在实际中是怎样一个应用地位? 是不是一般都用BL 模型?
答:在考试中(bl)是个比较重要的东西,实际中就是一个毛姑姑的玩意。