实操解析与训练
壹/ 神经网络实践
神经网络中基本概念理解:epoch、batch size、学习率、正则、噪声、激活函数等。
不同的数据生成模型、调整网络参数、调整网络规模
神经网络分类问题
不同数据特征的作用分析、隐含层神经元数目
过拟合
高频问题:
1、输入数据与数据特征
2、模型设计的过程中的参数与功能的关系。
关键点:
1、掌握神经网络的基本概念
2、学会搭建简单的神经网络结构
3、理解神经网络参数
贰 / 深度学习三种编程思想
Keras实践
理解Keras基本原理
学会Keras编程思想
三种不同的深度神经网络构建编程方式
给定数据集,采用Keras独立完成实际的工程项目
高频问题:
1、如何编程实现深度神经网络
2、三种开发方式的具体使用
关键点:
1、掌握Keras编程思想
2、采用三种不同方式编写深度神经网络
叁/ CNN实践
实验:图像分类
使用CNN解决图像分类问题
搭建AlexNet
VGG16/19
GoogleNet
ResNet
高频问题:
1、CNN更复杂的模型在哪里可以找到代码
关键点:
1、使用卷积神经网络做图像分类
2、常见开源代码以及适用的问题
实验:视频人物行为识别
基于C3D的视频行为识别方法
基于LSTM的视频行为识别方法
基于Attention的视频行为识别方法
高频问题:
1、2D卷积与3D卷积
2、视频的时空特征
关键点:
1、C3D网络的构建
2、Attention机制
肆 / R-CNN及YOLO实践
实验:目标检测
目标检测发展现状及代表性方法
两阶段目标检测方法:R-CNN系列模型
一阶段目标检测方法:YOLO系列模型
高频问题:
1、提名与分类
2、BBOX实现策略
3、YOLO Loss函数
关键点:
1、提名方法
2、ROI Pooling
3、SPP Net
4、RPN
5、YOLO
伍 / RNN实践
实验:股票预测
股票数据分析
同步预测
异步预测
高频问题:
1、历史数据的使用
关键点:
1、构建RNN
2、采用Keras编程实现
陆/ Encoder-Decoder实践
实验:去噪分析
自编码器
去噪自编码器
高频问题:
1、噪声的引入与去除
关键点:
1、设计去噪自编码器
实验:图像标题生成
结合计算机视觉和机器翻译的最新进展,利用深度神经网络生成真实的图像标题。
1、掌握Encoder-Decoder结构
2、学会Seq2seq结构
3、图像CNN +文本RNN
4、图像标题生成模型
高频问题:
1、如何能够根据图像生成文本?
关键点:
1、提取图像特征CNN,生成文本RNN
2、构建Encoder-Decoder结构
柒 / RNN实践
实验:艺术家作品生成
生成对抗网络原理
GAN的生成模型、判别模型的设计
捌 / 强化学习实践
实验:游戏分析
游戏场景分析
强化学习的要素分析
深度强化学习
玖/ 图卷积神经网络实践
实验:社交网络分析
图神经网络的原理
图卷积神经网络的思想
设计图卷积神经网络进行社交网络分析
拾 / Transformer实践
实验:基于Transformer的对话生成
Transformer原理
基于Transformer的对话生成
基于 Transformer 的应用
