全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析与数据挖掘
2153 0
2022-11-11

如上图的混淆矩阵,我们可以确定预测模型的灵敏度和特异度。

灵敏度指的是模型“击中”的概率,也就是对于实际发生(取值为1)的样本,模型预测为1的概率。对应上图的公式为A/(A+B)。

特异度指的是模型“正确否定”的概率,也就是说对于实际没发生(取值为0)的样本,模型预测为0的概率。对应上图的公式为D/(C+D)。

因此,可以看到不管是灵敏度还是特异度,都是越高,说明我们的模型越有效。在实际应用中,由于逻辑回归模型计算的结果其实是一个相对可能性p,因此我们可以根据实际情况调整判断取值为1的p的标准。更有侧重性地提高灵敏度或者特异度。

除了使用混淆矩阵,我们还可以通过ROC曲线的方式来图形化地判断模型效果。



ROC曲线也是基于灵敏度和特异度来进行判断的。曲线下面积AUC指的是ROC曲线、底线和右侧线围成的面积。ROC曲线的面积一般在0.5-1之间。这个数值越接近1,表明模型预测能力越强。当AUC在0.7-0.9时,我们认为模型有较高的判断作用。而AUC接近0.5的时候,我们人为这个模型是无效的




二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群