课程大纲:
第1讲,随机实验与自然实验。
随机实验是实证研究的黄金标准。
内容:随机实验,自然实验,内部有效性,外部有效性,最小二乘法(OLS),二值选择模型(Probit,Logit)。
案例:班级规模与学习成绩(Hanushek,1999),种族与就业歧视(Bertrand and Mullainathan, 2004),就业经历与未来就业(Pallais, 2014),最低工资与劳动力需求(Card and Krueger, 1994),参军与长期收入(Angrist, 1990)。
第2讲,工具变量法。
工具变量法是解决内生性的通用方法。
内容:2SLS,LIML,GMM,弱工具变量,过度识别检验,排他性约束,内生性检验,移动份额工具变量法(shift-share IV,即Bartik IV),异质性工具变量法(局部处理效应,LATE)。
案例:出生季度与教育年限(Angrist and Krueger,1991);殖民者死亡率与制度(Acemoglu et al., 2001);经济增长与非洲内战(Miguel et al., 2004);国企改革的作用(Groves et al., 1994);警察与犯罪率(Levitt, 1997);科举制对人力资本积累的长期影响(Chen et al., 2020);美国年轻男子的教育回报(Griliches, 1976);进口竞争对美国当地劳动力市场的影响(Autor et al., 2013)。
第3讲,匹配估计量。
本讲介绍基于非混杂性(unconfoundedness)的一系列估计方法。非混杂性意味着,若控制处理前的特征(pretreatment characteristics),则处理变量不再有内生性。
内容:匹配估计,倾向得分匹配(PSM; Rosenbaum and Rubin, 1983; Abadie and Imbens, 2016),回归调整法(regression adjustment;也称结果回归,outcome regression),逆概加权法(inverse probability weighting),双重稳健估计(doubly robust estimation)。
案例:就业培训的处理效应(LaLonde, 1986; Dehejia and Wahba, 1999)。
第4讲,断点回归与拐点回归。
由于在断点附近存在局部随机分组,故断点回归的效力接近于随机实验,日益为研究者所青睐(Thistlethwaite and Campbell, 1960; Imbens and Kalyanaraman, 2009; Calonico et al., 2014)。
内容:精确断点回归,模糊断点回归,密度(操纵)检验,稳健性检验,拐点回归(Nielsen et al., 2010; Card et al., 2015a, 2015b)。
案例:冬季燃煤取暖与人均寿命(Chen et al., 2013);扶贫政策的效应(Meng, 2013);买房落户与户口价值(Chen et al., 2019);美国参议院选举的在位者优势(Cattaneo et al., 2015)。
第5讲,合成控制法。
在评价某处理地区的政策效应时,将控制地区进行最优的线性组合,以构造合成控制地区进行对比,这是估计处理效应的流行方法(Abadie and Gardeazabal, 2003; Abadie et al., 2010)。
内容:比较案例分析,合成控制法,空间安慰剂检验,时间安慰剂检验,混合安慰剂检验(Chen and Yan, 2023),留一稳健性检验。
案例:马里矣尔船运(Mariel boatlift;Card, 1990);西班牙巴斯克地区恐怖活动的经济后果(Abadie and Gardeazabal, 2003);加州控烟法的成效(Abadie et al., 2010);德国统一的政策效应(Abadie et al., 2015)。
第6讲,回归控制法。
与合成控制法类似,但回归控制法使用回归法来构成反事实的控制地区(Hsiao et al., 2012; Hsiao and Zhou, 2019),比合成控制法更为简便易行。
内容:回归控制法,安慰剂检验,含协变量的回归控制法,分位数控制法(Quantile Control Method; Chen et al., 2023)。
案例:香港回归及与中国内地经济整合的效应(Hsiao et al., 2012);德国统一的政策效应(Abadie et al., 2015);四万亿经济刺激的效应(Ouyang and Peng, 2015);上海与重庆房产税试点的效应(Du and Zhang, 2015);高铁开通的政策效应(Ke et al., 2017);房票政策的房价效应(方诚、陈强,2021)。
第7讲,两期DID。
这是最基本的双重差分法模型,也是理解DID的基石。
内容:差分估计量,双重差分估计量,平行趋势假定(Parallel Trend Assumption, PTA),条件平行趋势假定(Conditional PTA),双向固定效应模型,PSM-DID(Heckman et al., 1997, 1998),逆概加权估计(Abadie, 2005),双重稳健估计(Sant’Anna and Zhao, 2020)。
案例:伦敦霍乱的自然实验;就业培训的政策效应(Ashenfelter, 1978);最低工资立法与劳动力需求(Card and Krueger, 1994)。
第8讲,经典多期DID。
经典多期DID模型包括两组(即处理组与控制组)与两时段(即处理前与处理后),而个体受政策冲击时间均相同;故也称为经典2x2DID。多期DID使得平行趋势假定的检验成为可能,且可使用事件分析法(event study)考察动态处理效应。
内容:平行趋势图,平行趋势检验,安慰剂检验,分组异质性,多期PSM-DID。
案例:漕粮海运与大运河沿线叛乱(Cao and Chen, 2022);人工智能翻译与国际贸易(Brynjolfsson et al., 2019)。
第9讲,交叠DID。
在交叠DID(Staggered DID)模型中,个体受政策处理时间不尽相同,但处理状态不可逆(irreversible treatment),即处理变量只能由0变为1,而不能从1变为0(即不允许政策退出),也称为“吸入式处理”(absorbing treatment)。在此框架下,若存在异质性处理效应(处理效应随个体或时间而异),则双向固定效应模型一般会有偏差,需使用异质性稳健的估计量,即在异质性效应情况下依然成立的估计方法。
内容:静态回归系数的Bacon分解(Goodman-Bacon, 2021),动态回归系数的Sun-Abraham分解(Sun and Abraham, 2021),交互加权估计(Interaction Weighted Estimation; Sun and Abraham, 2021),CSDID估计(Callaway and Sant’Anna, 2021,含结果回归、逆概加权估计,默认为双重稳健估计),二阶段DID(DID2S; Gardner, 2022),扩展TWFE估计(Wooldridge,2021),堆叠回归(Stacked Regression; Cengiz et al., 2019)。