全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
4350 5
2006-10-27
69113.pdf
大小:(118.72 KB)

只需: 5 个论坛币  马上下载


Abstract. Nowadays many researchers use GARCH models to generate
volatility forecasts. However, it is well known that volatility persistence,
as indicated by the sum of the two parameters G1 and A1[1], in GARCH
models is usually too high. Since volatility forecasts in GARCH models
are based on these two parameters, this may lead to poor volatility
forecasts. It has long been argued that this high persistence is due to
the structure changes(e.g. shift of volatility levels) in the volatility processes,
which GARCH models cannot capture. To solve this problem, we
introduce our GARCH model based on Hidden Markov Models(HMMs),
called HMM-GARCH model. By using the concept of hidden states,
HMMs allow for periods with different volatility levels characterized by
the hidden states. Within each state, local GARCH models can be applied
to model conditional volatility. Empirical analysis demonstrates
that our model takes care of the structure changes and hence yields better
volatility forecasts.

1 Introduction

2.HMM-GARCH Model

2.1GARCH Models

2.2 Hidden Markov Models

2.3 HMM-GARCH Model

3.Volatility Forecast Evaluation and Comparison

4 Conclusion

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2007-10-27 23:46:00
ding!!!!!!!!!!!!!!!!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-5-23 10:11:00
太好了,谢谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-5-24 11:58:00
I have copied or stealed this book,
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-5-24 11:59:00
but I don't know how process it
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-6-27 04:19:59
thank you very much lz
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群