urmine5683 发表于 2013-1-13 18:17 
大师 我老师让我做4个序列的 我还是过不去那个关卡。。。用Dynamic Toolbox 2。0 做DCC-Copula
Unde ...
第四个数据有问题,请检查一下数据
你的心意,我心领了.别在意.
%%%%%
data=xlsread('suanli.xls');
data=data*100;
[residuals, UnResiduals,GARCHspec,likelihoods]=filtReturnsGARCH(data,'Gaussian','GARCH', 'CML');
CopulaSpec=setCopulaLLinputs(4)
[CopParams, LogL, StrOutput]=fitCopula(UnResiduals, CopulaSpec)
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4
Standard T
Parameter Value Error Statistic
----------- ----------- ------------ -----------
C -0.034553 0.03632 -0.9513
K 0.069842 0.02367 2.9507
GARCH(1) 0.86663 0.032881 26.3568
ARCH(1) 0.075959 0.01989 3.8189
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4
Standard T
Parameter Value Error Statistic
----------- ----------- ------------ -----------
C 0.058345 0.056334 1.0357
K 0.21354 0.064157 3.3284
GARCH(1) 0.81641 0.04019 20.3136
ARCH(1) 0.11125 0.02779 4.0031
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4
Standard T
Parameter Value Error Statistic
----------- ----------- ------------ -----------
C 0.00035568 0.046248 0.0077
K 0.078873 0.030055 2.6243
GARCH(1) 0.87508 0.03086 28.3560
ARCH(1) 0.088385 0.02145 4.1205
Mean: ARMAX(0,0,0); Variance: GARCH(1,1)
Conditional Probability Distribution: Gaussian
Number of Model Parameters Estimated: 4
Standard T
Parameter Value Error Statistic
----------- ----------- ------------ -----------
C 0.047395 0.059229 0.8002
K 0.80247 7870.1 0.0001
GARCH(1) 0.61741 3752.2 0.0002
ARCH(1) 0 0.0097388 0.0000
CopulaSpec =
ll: 'copula'
type: 'Gaussian'
depspec: 'DCC'
optimizer: 'fmincon'
derivatives: 'on'
the parameters vector is a 2x1 vector
Max Line search Directional First-order
Iter F-count f(x) constraint steplength derivative optimality Procedure
0 3 -316.389 -0.0042
1 6 -323.865 1.102e-017 1 2.95 2.35e+003
2 9 -325.968 0 1 1.8 96.5
3 13 -327.873 -0.04021 0.5 -7.09 26.2
4 17 -329.962 -0.03994 0.5 -3.54 63.1 Hessian modified
5 22 -330.211 -0.03985 0.25 0.225 114
6 26 -330.863 -0.01992 0.5 2 112
7 29 -330.959 -0.02616 1 0.158 19.8
8 32 -330.978 -0.02703 1 0.091 32.3
9 35 -331.004 -0.02504 1 0.00794 4.4
10 38 -331.005 -0.02522 1 3.65e-006 0.0289
Optimization terminated: magnitude of directional derivative in search
direction less than 2*options.TolFun and maximum constraint violation
is less than options.TolCon.
No active inequalities.
succesfull optimization!
CopParams =
0.0253
0.8532
LogL =
331.0049
StrOutput =
Hessian: [2x2 double]
Gradient: [2x1 double]
exitflag: 5
timeinseconds: 5.4645