全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 MATLAB等数学软件专版
58771 94
2011-10-15
从网上找到的程序套用出来的,不明白各变量什么含义,和从文献上看到的对应不上……求高手解释!

程序(来自pinggu一位同学的回复,找不到在哪了看的了,在此感谢该同学热心提供):
all 350
open data 123.xls
data(format=xls,org=columns) / szgz szzs

compute n=2
dec vect[series] x(n)
compute i=0
dofor [string] s = 'szgz' 'szzs'
   compute xrate=s,i=i+1
   set x(i) = 100.0*log(%s(xrate)/%s(xrate){1})
end dofor

dec vect[series] eps(n)
dec vect fullbeta(4*n+2)

do i=1,n
   garch(p=1,q=1,resids=r,hseries=h) / x(i)
   set eps(i) = r/sqrt(h)
   do j=1,4
      compute fullbeta(n*(j-1)+i)=%beta(j)
   end do j
end do i

vcv(matrix=rr)
# eps
dec series[symm] uu q
gset uu %regstart() %regend() = %outerxx(%xt(eps,t))
gset uu 1 %regstart()-1 = rr
gset q  = rr
nonlin a b
dec frml[symm] qf
frml qf   = (qx=(1-a-b)*rr+a*uu{1}+b*q{1})
frml logl = q=qf,%logdensity(%cvtocorr(q),%xt(eps,t))
compute b=.80,a=.10
maximize logl 2 *
compute fullbeta(4*n+1)=%beta(1),fullbeta(4*n+2)=%beta(2)
garch(p=1,q=1,mv=dcc,method=bhhh,initial=fullbeta,iters=1) / x




结果:

MV_GARCH, DCC - Estimation by BHHH
NO CONVERGENCE IN 1 ITERATIONS
LAST CRITERION WAS  0.3207873
Usable Observations    350
Log Likelihood                    -871.98268799

   Variable                     Coeff       Std Error      T-Stat     Signif
*******************************************************************************
1.  Mean(1)                  -0.110164926  0.057507441     -1.91566  0.05540790
2.  Mean(2)                  -0.120592024  0.054127703     -2.22792  0.02588606
3.  C(1)                      3.886182140  0.433119528      8.97254  0.00000000
4.  C(2)                      0.050186732  0.008748604      5.73654  0.00000001
5.  A(1)                     -0.012518189  0.008799015     -1.42268  0.15482874
6.  A(2)                      0.025957364  0.005339964      4.86096  0.00000117
7.  B(1)                     -0.786725247  0.190925359     -4.12059  0.00003779
8.  B(2)                      0.947712044  0.008133608    116.51804  0.00000000
9.  DCC(1)                    0.033562707  0.020591364      1.62994  0.10311398
10. DCC(2)                    0.421838028  0.488911587      0.86281  0.38824169

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2011-10-15 22:28:52

你那已经是旧版的了

现在winrats 8.0已改用garchmv.rpf

第一个series garch(1,1) Mean(1)  C(1)  A(1)  B(1)

第二个series garch(1,1) Mean(2)  C(2)  A(2)  B(2)

第三个series garch(1,1) Mean(3)  C(3)  A(3)  B(3)

************
open data g10xrate.xls
data(format=xls,org=columns) 1 6237 usxjpn usxfra usxsui
*
set xjpn = 100.0*log(usxjpn/usxjpn{1})
set xfra = 100.0*log(usxfra/usxfra{1})
set xsui = 100.0*log(usxsui/usxsui{1})
*
* Examples with the different choices for the MV option
*
garch(p=1,q=1,pmethod=simplex,piters=10) / xjpn xfra xsui
garch(p=1,q=1,mv=bek,pmethod=simplex,piters=10) / xjpn xfra xsui
garch(p=1,q=1,mv=ewma) / xjpn xfra xsui
garch(p=1,q=1,mv=diag) / xjpn xfra xsui
garch(p=1,q=1,mv=cc)   / xjpn xfra xsui
garch(p=1,q=1,mv=dcc)  / xjpn xfra xsui
.....
.....

************

MV-GARCH, DCC - Estimation by BFGS
Convergence in    38 Iterations. Final criterion was  0.0000068 <=  0.0000100
Usable Observations                      6236
Log Likelihood                    -11814.4403

    Variable                        Coeff      Std Error      T-Stat      Signif
************************************************************************************
1.  Mean(1)                       0.003985855  0.005875531      0.67838  0.49752940
2.  Mean(2)                      -0.003136548  0.006242114     -0.50248  0.61532870
3.  Mean(3)                      -0.003075792  0.007394020     -0.41598  0.67742194
4.  C(1)                            0.008500817  0.001090221      7.79734  0.00000000
5.  C(2)                            0.012486309  0.001309289      9.53671  0.00000000
6.  C(3)                            0.016570990  0.001872334      8.85044  0.00000000
7.  A(1)                            0.151681425  0.009804234     15.47101  0.00000000
8.  A(2)                            0.138388680  0.007233548     19.13151  0.00000000
9.  A(3)                            0.123714941  0.007368073     16.79068  0.00000000
10. B(1)                            0.851986104  0.008444970    100.88682  0.00000000
11. B(2)                            0.848520831  0.007099401    119.52006  0.00000000
12. B(3)                            0.857975477  0.007948108    107.94714  0.00000000
13. DCC(1)                        0.053241536  0.003415218     15.58950  0.00000000
14. DCC(2)                        0.939058550  0.004030189    233.00610  0.00000000

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-16 16:42:32
epoh 发表于 2011-10-15 22:28
你那已经是旧版的了现在winrats 8.0已改用garchmv.rpf第一个series garch(1,1) Mean(1)  C(1)  A(1)  B(1)  ...
epoh老师,您好!
      garchmv.rpf这个文件能在winrats7.0上运行吗?
与7.0的以下程序有什么区别?
GARCHMV.PRG
* Manual Example 12.2
*
open data g10xrate.xls
data(format=xls,org=columns) 1 6237 usxjpn usxfra usxsui
*
set xjpn = 100.0*log(usxjpn/usxjpn{1})
set xfra = 100.0*log(usxfra/usxfra{1})
set xsui = 100.0*log(usxsui/usxsui{1})
*
garch(p=1,q=1,iters=200,hmatrices=hh) / xjpn xfra xsui
garch(p=1,q=1,mv=bek,method=bfgs,iters=200,pmethod=simplex,piters=10) / xjpn xfra xsui
garch(p=1,q=1,mv=diag,hmatrices=hd,rvectors=rd) / xjpn xfra xsui
garch(p=1,q=1,mv=cc) / xjpn xfra xsui
garch(p=1,q=1,mv=dcc,method=bfgs) / xjpn xfra xsui
*
* Compute the covariance matrix of the standardized residuals from
* the diagonal GARCH
*
set z1 = rd(t)(1)/sqrt(hd(t)(1,1))
set z2 = rd(t)(2)/sqrt(hd(t)(2,2))
set z3 = rd(t)(3)/sqrt(hd(t)(3,3))
vcv(matrix=cc)
# z1 z2 z3
*
* Compute the correlations from the multivariate GARCH
*
set rho12 = hh(t)(1,2)/sqrt(hh(t)(1,1)*hh(t)(2,2))
set rho13 = hh(t)(1,3)/sqrt(hh(t)(1,1)*hh(t)(3,3))
set rho23 = hh(t)(2,3)/sqrt(hh(t)(2,2)*hh(t)(3,3))
graph(header="Correlation of JPN with FRA",vgrid=||cc(1,2)||)
# rho12
graph(header="Correlation of JPN with SUI",vgrid=||cc(1,3)||)
# rho13
graph(header="Correlation of FRA with SUI",vgrid=||cc(2,3)||)
# rho23
*
* AR(1) models for each
*
equation(constant) jpneq xjpn 1
equation(constant) fraeq xfra 1
equation(constant) suieq xsui 1
group ar1 jpneq fraeq suieq
garch(p=1,q=1,model=ar1,mv=dcc,pmethod=simplex,piter=20,method=bfgs,iters=200,trace) / xjpn xfra xsui
*
* Compute correlations into the forecast period, and graph them along with some of the final
* values from the actual sample. The GRID option puts a vertical line at the separation
* between actual data and forecasts.
*
garch(p=1,q=1,iters=200,hmatrices=hh,rvectors=us) / xjpn xfra xsui
@MVGarchFore(steps=100) hh us
set rho12 6238 6337 = hh(t)(1,2)/sqrt(hh(t)(1,1)*hh(t)(2,2))
set rho13 6238 6337 = hh(t)(1,3)/sqrt(hh(t)(1,1)*hh(t)(3,3))
set rho23 6238 6337 = hh(t)(2,3)/sqrt(hh(t)(2,2)*hh(t)(3,3))
graph(header="Correlation of JPN with FRA",vgrid=||cc(1,2)||,grid=(t==6237))
# rho12 6100 6337
graph(header="Correlation of JPN with SUI",vgrid=||cc(1,3)||,grid=(t==6237))
# rho13 6100 6337
graph(header="Correlation of FRA with SUI",vgrid=||cc(2,3)||,grid=(t==6237))
# rho23 6100 6337
*
* Estimation using MAXIMIZE
* The initial few lines of this set the estimation range, which needs to be done explicitly,
* and the number of variables. Then, vectors for the dependent variables, residuals and
* residuals formulas are set up. The SET instructions copy the dependent variables over into
* the slots in the vector of series.
*
compute gstart=2,gend=6237
compute n=3
dec vect[series] y(n) u(n)
dec vect[frml] resid(n)
set y(1) = xjpn
set y(2) = xfra
set y(3) = xsui
*
* This is specific to a mean-only model. It sets up the formulas (the &i are needed in the
* formula definitions when the FRML is defined in a loop), and estimates them using NLSYSTEM.
* This both initializes the mean parameters, and computes the unconditional covariance matrix.
* If you want more general mean equations, the simplest way to do that would be to define each
* FRML separately.
*
dec vect b(n)
nonlin(parmset=meanparms) b
do i=1,n
   frml resid(i) = (y(&i)-b(&i))
end do i
nlsystem(parmset=meanparms,resids=u) gstart gend resid
compute rr=%sigma
*
* The paths of the covariance matrices and uu' are saved in the SERIES[SYMM] names H and UU.
* UX and HX are used to pull in residuals and H matrices.
*
declare series[symm] h uu
*
* ux is used when extracting a u vector
*
declare symm hx(n,n)
declare vect ux(n)
*
* These are used to initialize pre-sample variances.
*
gset h  * gend = rr
gset uu * gend = rr
*
* This is a standard (normal) log likelihood formula for any multivariate GARCH model.
* The difference among these will be in the definitions of HF and RESID. The function
* %XT pulls information out of a matrix of SERIES.
*
declare frml[symm] hf
*
frml logl = $
    hx = hf(t) , $
    %do(i,1,n,u(i)=resid(i)) , $
    ux = %xt(u,t), $
    h(t)=hx, uu(t)=%outerxx(ux), $
    %logdensity(hx,ux)
*****************************************************
*
* Standard GARCH(1,1)
*
dec symm vcs(n,n) vas(n,n) vbs(n,n)
compute vcs=rr,vbs=%const(0.05),vas=%const(0.05)
nonlin(parmset=garchparms) vcs vas vbs
frml hf = vcs+vbs.*h{1}+vas.*uu{1}
maximize(parmset=meanparms+garchparms,pmethod=simplex,piters=10,method=bfgs,iters=400) logl gstart gend
*****************************************************
*
* CCC
* The correlations are parameterized using an (n-1)x(n-1) matrix for
* the subdiagonal. The (i,j) element of this will actually be the
* correlation between i+1 and j.
*
dec symm qc(n-1,n-1)
dec vect vcv(n) vbv(n) vav(n)
*
function hfcccgarch time
type symm hfcccgarch
type integer time
do i=1,n
   compute hx(i,i)=vcv(i)+vav(i)*h(time-1)(i,i)+vbv(i)*uu(time-1)(i,i)
   do j=1,i-1
     compute hx(i,j)=qc(i-1,j)*sqrt(hx(j,j)*hx(i,i))
   end do j
end do i
compute hfcccgarch=hx
end
*
frml hf = hfcccgarch(t)
nonlin(parmset=garchparms) vcv vbv vav qc
compute vcv=%xdiag(rr),vbv=%const(0.05),vav=%const(0.05),qc=%const(0.0)
maximize(parmset=meanparms+garchparms,pmethod=simplex,piters=10,method=bfgs) logl gstart gend





GARCH Model - Estimation by BFGS
Convergence in    60 Iterations. Final criterion was  0.0000000 <=  0.0000100
Usable Observations   6236
Log Likelihood                  -11835.65541089

   Variable                     Coeff       Std Error      T-Stat     Signif
*******************************************************************************
1.  Mean(1)                   0.004649082  0.006576630      0.70691  0.47962269
2.  Mean(2)                  -0.003482788  0.006942195     -0.50168  0.61588981
3.  Mean(3)                  -0.002343658  0.008167577     -0.28695  0.77415329
4.  C(1,1)                    0.009018787  0.001134922      7.94661  0.00000000
5.  C(2,1)                    0.005698447  0.000749274      7.60530  0.00000000
6.  C(2,2)                    0.011514300  0.001467482      7.84630  0.00000000
7.  C(3,1)                    0.006014742  0.000786802      7.64454  0.00000000
8.  C(3,2)                    0.009941049  0.001281123      7.75964  0.00000000
9.  C(3,3)                    0.012776962  0.001603110      7.97011  0.00000000
10. A(1,1)                    0.105858581  0.007515938     14.08455  0.00000000
11. A(2,1)                    0.093978611  0.006049520     15.53489  0.00000000
12. A(2,2)                    0.128210057  0.006786935     18.89072  0.00000000
13. A(3,1)                    0.088845884  0.005500928     16.15107  0.00000000
14. A(3,2)                    0.113667210  0.005960698     19.06945  0.00000000
15. A(3,3)                    0.111557248  0.006229681     17.90738  0.00000000
16. B(1,1)                    0.883925113  0.007977380    110.80394  0.00000000
17. B(2,1)                    0.890949460  0.006338829    140.55426  0.00000000
18. B(2,2)                    0.860817189  0.007062831    121.87990  0.00000000
19. B(3,1)                    0.897615376  0.005766485    155.66075  0.00000000
20. B(3,2)                    0.874823517  0.006191925    141.28459  0.00000000
21. B(3,3)                    0.877439677  0.006275555    139.81866  0.00000000


MV-GARCH, BEKK - Estimation by BFGS
Convergence in    95 Iterations. Final criterion was  0.0000068 <=  0.0000100
Usable Observations   6236
Log Likelihood                  -11821.74555534

   Variable                     Coeff       Std Error      T-Stat     Signif
*******************************************************************************
1.  Mean(1)                   0.005278552  0.006003487      0.87925  0.37926700
2.  Mean(2)                  -0.002367253  0.005423869     -0.43645  0.66250955
3.  Mean(3)                  -0.002512941  0.006388059     -0.39338  0.69403817
4.  C(1,1)                    0.082829938  0.005052362     16.39430  0.00000000
5.  C(2,1)         
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-16 18:46:28
不知能否上传源代码
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-16 19:31:15

我看差异不大,

就多了garch(p=1,q=1,mv=ewma) / xjpn xfra xsui

不过winrats 8,univariate garch and multivariate garch

多了图形介面,类似eviews,对初学者来说相当方便.

详请看chap 9 ARCH and GARCH Models.pdf

  

不知楼上,需要的是哪一个代码

garchmv.prg or garchmv.rpf or both

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2011-10-17 17:08:33
epoh 发表于 2011-10-16 19:31
我看差异不大,就多了garch(p=1,q=1,mv=ewma) / xjpn xfra xsui不过winrats 8,univariate garch and multiva ...
epoh老师,您好!
    garchmv.rpf 是什么文件格式?我是第一次看到rpf这种文件格式,用什么方法可以打开?
您能把garchmv.rpf这个文件上传吗?我想想看看在winrats7中能否打开?
非常感谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群