你那已经是旧版的了
现在winrats 8.0已改用garchmv.rpf
第一个series garch(1,1) Mean(1) C(1) A(1) B(1)
第二个series garch(1,1) Mean(2) C(2) A(2) B(2)
第三个series garch(1,1) Mean(3) C(3) A(3) B(3)
************
open data g10xrate.xls
data(format=xls,org=columns) 1 6237 usxjpn usxfra usxsui
*
set xjpn = 100.0*log(usxjpn/usxjpn{1})
set xfra = 100.0*log(usxfra/usxfra{1})
set xsui = 100.0*log(usxsui/usxsui{1})
*
* Examples with the different choices for the MV option
*
garch(p=1,q=1,pmethod=simplex,piters=10) / xjpn xfra xsui
garch(p=1,q=1,mv=bek,pmethod=simplex,piters=10) / xjpn xfra xsui
garch(p=1,q=1,mv=ewma) / xjpn xfra xsui
garch(p=1,q=1,mv=diag) / xjpn xfra xsui
garch(p=1,q=1,mv=cc) / xjpn xfra xsui
garch(p=1,q=1,mv=dcc) / xjpn xfra xsui
.....
.....
************
MV-GARCH, DCC - Estimation by BFGS
Convergence in 38 Iterations. Final criterion was 0.0000068 <= 0.0000100
Usable Observations 6236
Log Likelihood -11814.4403
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Mean(1) 0.003985855 0.005875531 0.67838 0.49752940
2. Mean(2) -0.003136548 0.006242114 -0.50248 0.61532870
3. Mean(3) -0.003075792 0.007394020 -0.41598 0.67742194
4. C(1) 0.008500817 0.001090221 7.79734 0.00000000
5. C(2) 0.012486309 0.001309289 9.53671 0.00000000
6. C(3) 0.016570990 0.001872334 8.85044 0.00000000
7. A(1) 0.151681425 0.009804234 15.47101 0.00000000
8. A(2) 0.138388680 0.007233548 19.13151 0.00000000
9. A(3) 0.123714941 0.007368073 16.79068 0.00000000
10. B(1) 0.851986104 0.008444970 100.88682 0.00000000
11. B(2) 0.848520831 0.007099401 119.52006 0.00000000
12. B(3) 0.857975477 0.007948108 107.94714 0.00000000
13. DCC(1) 0.053241536 0.003415218 15.58950 0.00000000
14. DCC(2) 0.939058550 0.004030189 233.00610 0.00000000
epoh 发表于 2011-10-15 22:28
你那已经是旧版的了现在winrats 8.0已改用garchmv.rpf第一个series garch(1,1) Mean(1) C(1) A(1) B(1) ...
我看差异不大,
就多了garch(p=1,q=1,mv=ewma) / xjpn xfra xsui
不过winrats 8,univariate garch and multivariate garch
多了图形介面,类似eviews,对初学者来说相当方便.
详请看chap 9 ARCH and GARCH Models.pdf
不知楼上,需要的是哪一个代码
garchmv.prg or garchmv.rpf or both
epoh 发表于 2011-10-15 22:28
你那已经是旧版的了现在winrats 8.0已改用garchmv.rpf第一个series garch(1,1) Mean(1) C(1) A(1) B(1) ...
Engle and Sheppard (2001)将 DCC 的估计简化成两步骤:
第一阶段利用单变量的 GARCH模型估计出 N 个市场的条件变异数,
第二阶段则是利用标准化后的残差估计动态条件相关系数模型的参数
多元GARCH的教材,比较全面性的,可以参考G@RCH网页说明
http://www.core.ucl.ac.be/~laurent/G@RCH/site/default.htm
**************************************************************
底下用Dynamic Conditional Correlations in Political Science.pdf
GARCH-DCC,Palestinian-Jordanian Interaction,来说明
请注意参照page 13/17 Table4 & page 14/17 Figure(5)
尤其是Table 4,底下的公式说明
political.xls
political.rpf
有2个 timeseries : paljordf , jorpaldf
第一阶段:
第一个timeseries,paljordf作单变量 GARCH((1,1)模型,得结果如下:
这就是你说你不清楚的 Mean , C , A , B
GARCH Model - Estimation by BFGS
Convergence in 2 Iterations. Final criterion was 0.0000007 <= 0.0000100
Dependent Variable X(1)
Monthly Data From 1979:05 To 2004:06
Usable Observations 302
Log Likelihood -949.5195
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Mean 1.241220733 0.300907014 4.12493 0.00003708
2. C 16.629207303 0.713892438 23.29372 0.00000000
3. A 0.096065928 0.033643705 2.85539 0.00429839
4. B 0.390965289 0.023385351 16.71838 0.00000000
****
第二个timeseries,jorpaldf作单变量 GARCH((1,1)模型,得结果如下:
GARCH Model - Estimation by BFGS
Convergence in 1 Iterations. Final criterion was 0.0000017 <= 0.0000100
Dependent Variable X(2)
Monthly Data From 1979:05 To 2004:06
Usable Observations 302
Log Likelihood -985.1334
Variable Coeff Std Error T-Stat Signif
************************************************************************************
1. Mean 0.871633023 0.363485132 2.39799 0.01648540
2. C 12.595500456 0.839978165 14.99503 0.00000000
3. A 0.239965400 0.032834107 7.30842 0.00000000
4. B 0.501668102 0.021182734 23.68288 0.00000000
***********
第二阶段:利用标准化后的残差,估计动态条件相关系数模型的参数
MAXIMIZE - Estimation by BFGS
Convergence in 7 Iterations. Final criterion was 0.0000005 <= 0.0000100
Monthly Data From 1979:05 To 2004:06
Usable Observations 302
Function Value -819.46800090
Variable Coeff Std Error T-Stat Signif
*******************************************************************************
1. A 0.0568103431 0.0181977849 3.12183 0.00179732
2. B 0.9024344053 0.0299439384 30.13747 0.00000000
以上结果就是Table 4
******************
接着对 full model作进一步优化可得结果如下:
MV_GARCH, DCC - Estimation by Simplex
Monthly Data From 1979:05 To 2004:06
Usable Observations 302
Log Likelihood -1892.25407312
Variable Coeff
*****************************************
1. Mean(1) 1.349712367
2. Mean(2) 1.019877717
3. C(1) 21.226698274
4. C(2) 15.127824269
5. A(1) 0.302760614
6. A(2) 0.352185079
7. B(1) 0.152136311
8. B(2) 0.401328526
9. DCC(1) 0.096570674
10. DCC(2) 0.896468932
bang4kimo 发表于 2012-2-15 23:19
老師您太厲害了!!
我想請問老師
garch(p=1,q=1,mv=cc,variances=varma,pmethod=simplex,piters=5,$
bang4kimo 发表于 2012-2-16 23:55
這是用s-plus算的嗎?
他可以一次就知道 estimates conditional constant corrlation matrix
AIC BIC 也 ...
epoh 发表于 2011-10-27 19:05
Engle and Sheppard (2001)将 DCC 的估计简化成两步骤:第一阶段利用单变量的 GARCH模型估计出 N 个市场的条 ...
扫码加好友,拉您进群



收藏
