全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 数据分析师(CDA)专版
1963 14
2024-12-24

随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近的文章

前景依然璀璨

2023世界经济论坛发布的《未来就业报告》,预测了未来五年内增长最快的十大岗位,其中就包括了数据分析师和科学家、数字化转型人员。

随着各行各业的数字化转型,未来数年全球数据总量将继续保持高速增长态势。如此庞大的数据海洋,若没有专业的数据分析师进行挖掘、整理与解读,那它们就只是一堆毫无价值的乱码。而企业为了在激烈的市场竞争中获取优势,必然需要依靠数据分析师从这些数据中提炼出有价值的信息,如消费者的潜在需求、市场的最新趋势、业务流程中的优化点等。因此,只要数据的 “开采” 与利用需求存在,数据分析师就永远有其用武之地

一些人担忧数据分析师会被技术所取代。但实际上,这恰恰是数据分析师迎来新飞跃的契机。在 2025 年,掌握先进技术的数据分析师将如虎添翼,能够开展更为复杂、深入和精准的分析工作,为企业提供更高层次的价值服务。

一、数据分析入门指南

1、建立基础知识体系

数据分析离不开数学和统计学知识。至少要掌握基本的数学运算,如代数、几何等,这些知识有助于理解数据之间的关系。而统计学更是数据分析的核心工具,重点学习概率、均值、中位数、标准差、相关性、回归分析等概念。

例如,通过计算均值和标准差可以了解数据的集中趋势和离散程度,相关性分析能够帮助我们发现变量之间的关联。

二、掌握数据处理与可视化工具

Excel

Excel 是一款非常基础且实用的数据处理工具。它可以进行简单的数据录入、整理和计算。例如,通过使用函数(如 VLOOKUP、SUMIF 等)来汇总和关联数据,利用数据透视表功能快速分析数据的不同维度。对于小型数据集的分析和初步探索,Excel 是一个很好的选择。

学习资源:微软官方网站有 Excel 的教程,从基础操作到高级功能都有详细的讲解。此外,网上也有很多 Excel 技巧分享的教程,可以帮助你快速提升 Excel 技能。

数据可视化工具

数据可视化能够将复杂的数据以直观的图表形式展现出来,帮助我们更好地理解数据和发现规律。Tableau 和 PowerBI 是两款流行的可视化工具。Tableau 具有强大的可视化功能和丰富的图表类型,能够快速创建交互式的可视化作品;PowerBI 则与微软的生态系统紧密结合,方便对 Excel 等数据源进行可视化处理。

学习方式:可以下载这些工具的试用版,通过官方提供的示例数据集进行操作练习。同时,它们的官方网站也有教程和案例分享,帮助你掌握如何将数据转换为有吸引力的可视化图表。

三、学习数据分析方法与流程

了解数据分析流程

一个完整的数据分析流程通常包括问题定义、数据收集、数据清洗、数据分析、结果解释和决策建议。

如果你想分析一家电商店铺的销售情况,首先要明确问题,如 “哪些产品的销售增长最快?” 然后收集店铺的销售数据,清洗掉其中的错误数据和重复数据,接着运用合适的分析方法(如分类汇总、时间序列分析等)进行分析,最后解释分析结果并提出相应的决策建议,如加大销售增长快的产品的库存和推广力度。

常用数据分析方法

除了前面提到的统计学方法,还需要学习数据挖掘方法,如聚类分析、分类分析等。

聚类分析可以将数据对象划分为不同的群组,例如将客户根据消费行为划分为不同的客户群体,以便企业进行精准营销;分类分析则可以根据历史数据预测新数据的类别,比如预测客户是否会购买某个产品。

四、实践与项目积累

可以从身边的数据入手,如分析自己的消费记录、运动数据等。或者从网上找一些公开的数据集,如 UCI 机器学习库中的数据集,进行分析。

数据分析入门需要建立知识体系、掌握工具、学习方法和流程,并通过实践不断积累经验。

抓住机遇,狠狠提升自己

随着各行各业进行数字化转型,数据分析能力已经成了职场的刚需能力,这也是这两年CDA数据分析师大火的原因。和领导提建议再说“我感觉”“我觉得”,自己都觉得心虚,如果说“数据分析发现……”,肯定更有说服力。想在职场精进一步还是要学习数据分析的,统计学、概率论、商业模型、SQL,Python还是要会一些,能让你工作效率提升不少。备考CDA数据分析师的过程就是个自我提升的过程,CDA小程序资料非常丰富,包括题库、考纲等,利用好了自学就能考过。

CDA 考试官方报名入口:https://www.cdaglobal.com/pinggu.html

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2024-12-24 09:51:42
数据分析师在2025年的前景确实依然广阔且充满机遇。随着大数据时代的到来,各行各业对于数据价值的认识逐渐加深,企业越来越依赖于数据分析来优化决策、提升效率和增强市场竞争力。以下是对数据分析入门的一些基本指南:

1. **建立基础知识体系**:数学与统计学是数据分析的基石。掌握概率论、数理统计、线性代数等基础理论知识至关重要。此外,理解数据结构和算法也有助于更高效地处理数据。

2. **编程技能**:熟悉一门或多门数据分析相关的编程语言是必须的,如Python或R。这些工具能够帮助你进行数据清洗、预处理和建模分析。

3. **掌握数据分析工具与技术**:学习使用SQL进行数据库操作,以及使用Excel、Tableau等可视化工具来展示分析结果。同时了解机器学习算法、数据挖掘技术和大数据处理框架(如Hadoop或Spark)也是很有帮助的。

4. **项目实践**:理论知识需要通过实际项目来巩固和深化理解。可以尝试参与数据分析相关的竞赛,或者找一些开源数据集进行练习,逐步提升自己的实战能力。

5. **持续学习与跟进行业动态**:技术领域日新月异,保持好奇心,关注最新的数据分析趋势、算法和技术,参加培训课程或研讨会,以保持竞争力并适应未来的需求变化。

总之,在2025年乃至更长远的未来,数据分析师仍然会是市场需求旺盛的职业之一。不断提升自己的技能和知识水平,将有助于在这个领域中立足并取得成功。

此文本由CAIE学术大模型生成,添加下方二维码,优先体验功能试用



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2024-12-24 10:01:26
现在不会数据分析,工作都不好进展,确实是
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2024-12-24 10:04:06
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2024-12-24 12:01:41
谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2024-12-24 13:39:30

谢谢分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群