全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 MATLAB等数学软件专版
10018 15
2012-03-20
David Barber
Bayesian Reasoning and Machine Learning
http://www.cambridge.org/gb/knowledge/isbn/item6222196/Bayesian%20Reasoning%20and%20Machine%20Learning/?site_locale=en_GB
  • ISBN:9780521518147
  • Publication date:February 2012

             Table of Contents          Preface
Part I. Inference in Probabilistic Models: 1. Probabilistic reasoning
2. Basic graph concepts
3. Belief networks
4. Graphical models
5. Efficient inference in trees
6. The junction tree algorithm
7. Making decisions
Part II. Learning in Probabilistic Models: 8. Statistics for machine learning
9. Learning as inference
10. Naive Bayes
11. Learning with hidden variables
12. Bayesian model selection
Part III. Machine Learning: 13. Machine learning concepts
14. Nearest neighbour classification
15. Unsupervised linear dimension reduction
16. Supervised linear dimension reduction
17. Linear models
18. Bayesian linear models
19. Gaussian processes
20. Mixture models
21. Latent linear models
22. Latent ability models
Part IV. Dynamical Models: 23. Discrete-state Markov models
24. Continuous-state Markov models
25. Switching linear dynamical systems
26. Distributed computation
Part V. Approximate Inference: 27. Sampling
28. Deterministic approximate inference
Appendix. Background mathematics
Bibliography
Index.

120211.zip
大小:(4.63 MB)

只需: 10 个论坛币  马上下载

本附件包括:

  • setup.m
  • README.txt
  • cap.m
  • LICENSE.txt
  • gpl.txt
  • FactorGraph.m
  • checkFactorGraph.m
  • absorb.m
  • absorption.m
  • absorptionID.m
  • ancestors.m
  • ancestralorder.m
  • ancestralsample.m
  • assign.m
  • bar3zcolor.m
  • bucketelim.m
  • condindep.m
  • condpot.m
  • dag.m
  • deltapot.m
  • descendents.m
  • disptable.m
  • divpots.m
  • edges.m
  • elimtri.m
  • evalpot.m
  • eyepot.m
  • ind2subv.m
  • istree.m
  • jtassignpot.m
  • jtree.m
  • jtreeID.m
  • lengthcell.m
  • markov.m
  • maxpot.m
  • maxprodFG.m
  • maxsumpot.m
  • mostprobablepath.m
  • multpots.m
  • numstates.m
  • orderpotfields.m
  • orderpot.m
  • potscontainingonly.m
  • potvariables.m
  • randgen.m
  • replace.m
  • setdiff_unsorted.m
  • setevpot.m
  • setpot.m
  • spantree.m
  • subv2ind.m
  • triangulateComponent.m
  • sumpot.m
  • sumpots.m
  • sumprodFG.m
  • triangulate.m
  • triangulatePorder.m
  • uniquepots.m
  • validgridposition.m
  • whichpot.m
  • maxarray.m
  • connectedComponents.m
  • changevar.m
  • FactorConnectingVariable.m
  • VariableConnectingFactor.m
  • drawFG.m
  • maxNarray.m
  • maxNpot.m
  • maxNprodFG.m
  • mvrandn.m
  • dirrnd.m
  • mygamrnd.m
  • blanknames.m
  • blankstates.m
  • MesstoFact.m
  • squeezepots.m
  • MDPsolve.m
  • table.m
  • normp.m
  • argmax.m
  • potsample.m
  • logpot.m
  • condindepEmp.m
  • condMI.m
  • count.m
  • chi2test.m
  • neigh.m
  • field2cell.m
  • mynchoosek.m
  • mynanmean.m
  • MDPemDeterministicPolicy.m
  • EMqTranMarginal.m
  • EMqUtilMarginal.m
  • EMminimizeKL.m
  • EMvalueTable.m
  • EMTotalBetaMessage.m
  • sumpotID.m
  • IDvars.m
  • noselfpath.m
  • parents.m
  • children.m
  • drawJTree.m
  • drawNet.m
  • drawID.m
  • exppot.m
  • LoopyBP.m
  • MaxFlow.m
  • myones.m
  • setstate.m
  • condindepPot.m
  • myzeros.m
  • myrand.m
  • mostprobablepathmult.m
  • mynansum.m
  • isoctave.m
  • potistyped.m
  • logsigma.m
  • setfields.m
  • PCskeletonOracle.m
  • PCorient.m
  • PCskeletonData.m
  • BDscore.m
  • learnBayesNet.m
  • normpot.m
  • KLdiv.m
  • condMIemp.m
  • MIemp.m
  • squeezestates.m
  • JTsample.m
  • singleparenttree.m
  • neighboursize.m
  • argmin.m
  • IPF.m
  • nonzerovalue.m
  • empdist.m
  • learnMarkovDecomp.m
  • EntropyEmp.m
  • GibbsSample.m
  • mylogsig.m
  • grouppot.m
  • ungrouppot.m
  • groupstate.m
  • makeThinJT.m
  • gatherstrings.m
  • getdimind.m
  • EMbeliefnet.m
  • majority.m
  • nearNeigh.m
  • svdm.m
  • BayesLogRegressionRVM.m
  • CanonVar.m
  • GPreg.m
  • LogReg.m
  • avsigmaGauss.m
  • covfnGE.m
  • logdet.m
  • plsa.m
  • plsaCond.m
  • sigmoid.m
  • sigma.m
  • softloss.m
  • rbf.m
  • kernel.m
  • sqdist.m
  • BayesLinReg.m
  • HMMem.m
  • condp.m
  • condexp.m
  • HMMviterbi.m
  • HMMsmooth.m
  • HMMforward.m
  • HMMbackward.m
  • logsumexp.m
  • HMMgamma.m
  • mixMarkov.m
  • pointsCov.m
  • GMMem.m
  • Kmeans.m
  • MIXprodBern.m
  • LDSsmooth.m
  • LDSsubspace.m
  • LDSforwardUpdate.m
  • LDSbackwardUpdate.m
  • LDSforward.m
  • LDSbackward.m
  • SLDSforward.m
  • SLDSbackward.m
  • logeps.m
  • mix2mix.m
  • placeobject.m
  • sumlog.m
  • metropolis.m
  • logp.m
  • compat.m
  • betaXbiggerY.m
  • HebbML.m
  • NaiveBayesTrain.m
  • NaiveBayesTest.m
  • NaiveBayesDirichletTrain.m
  • NaiveBayesDirichletTest.m
  • logZdirichlet.m
  • SARlearn.m
  • ARtrain.m
  • HMMforwardSAR.m
  • HMMbackwardSAR.m
  • HMMsmoothSAR.m
  • ARlds.m
  • pca.m
  • hinton.m
  • FA.m
  • plotCov.m
  • GaussCond.m
  • SVMtrain.m
  • cca.m
  • SLDSmargGauss.m
  • binaryMRFmap.m
  • GPclass.m
  • cliquedecomp.m
  • rasch.m
  • conjgrad.m
  • Contents.m



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-10-13 06:57:25
非常感谢就是有点贵
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-10-19 00:53:34
有点贵,呵呵,下不起
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-2-7 14:50:35
This is the draft version, not worthy to buy.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2013-2-25 14:14:33
太贵了吧
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2014-7-7 13:41:23
支持!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群