全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
38399 160
2007-02-23

I already obtained enough money for my purchase, so i free this book.

“Econometric Theory and Methods” 英文版 PDF

By Davidson and Mackinnon 4.5M

这是我在美国读博士二年级时的教材。 一年级用的是格林的书。

个人感觉在理论的解释上比格林的书要清楚。 尤其在面板数据(PANEL DATA), IV estimation SUR .(这本书的Hausman-Dubin-Wu test 解释的很清楚,通过这个TEST 你可以知道是否要用IV ESTIMATOR,fiexed effect model or random effect model, which one is better. And some more general uses.)

从下面LINK, 可以下载每章后的练习题的数据集

92579.rar
大小:(4.5 MB)

 马上下载

(I have a brief introduction of this book at the seventh floor.)

Some guys pointed out that the version of this e-book is older than the hardcopy of this book. I did not compare them carefully, however when i took the econometric class, i used this ebook instead of the hardcopy of 2004 version. So i think the difference between this e-book and hardcopy is subtle. 
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2007-2-23 07:13:00

书的目录

Table of Contents


Chapter 1 Regression Models 1

  • 1.1 Introduction 1
  • 1.2 Distributions, Densities, and Moments 3
  • 1.3 The Specification of Regression Models 15
  • 1.4 Matrix Algebra 22
  • 1.5 Method-of-Moments Estimation 30
  • 1.6 Notes on the Exercises 37
  • 1.7 Exercises 38

Chapter 2 The Geometry of Linear Regression 42

  • 2.1 Introduction 42
  • 2.2 The Geometry of Vector Spaces 43
  • 2.3 The Geometry of OLS Estimation 54
  • 2.4 The Frisch-Waugh-Lovell Theorem 62
  • 2.5 Applications of the FWL Theorem 69
  • 2.6 Influential Observations and Leverage 76
  • 2.7 Final Remarks 81
  • 2.8 Exercises 82

Chapter 3 The Statistical Properties of Ordinary Least Squares 86

  • 3.1 Introduction 86
  • 3.2 Are OLS Parameter Estimators Unbiased? 88
  • 3.3 Are OLS Parameter Estimators Consistent? 92
  • 3.4 The Covariance Matrix of the OLS Parameter Estimates 97
  • 3.5 Efficiency of the OLS Estimator 104
  • 3.6 Residuals and Error Terms 107
  • 3.7 Misspecification of Linear Regression Models 111
  • 3.8 Measures of Goodness of Fit 115
  • 3.9 Final Remarks 118
  • 3.10 Exercises 118

Chapter 4 Hypothesis Testing in Linear Regression Models 122

  • 4.1 Introduction 122
  • 4.2 Basic Ideas 122
  • 4.3 Some Common Distributions 129
  • 4.4 Exact Tests in the Classical Normal Linear Model 138
  • 4.5 Large-Sample Tests in Linear Regression Models 146
  • 4.6 Simulation-Based Tests 155
  • 4.7 The Power of Hypothesis Tests 166
  • 4.8 Final Remarks 172
  • 4.9 Exercises 172

Chapter 5 Confidence Intervals 177

  • 5.1 Introduction 177
  • 5.2 Exact and Asymptotic Confidence Intervals 178
  • 5.3 Bootstrap Confidence Intervals 185
  • 5.4 Confidence Regions 189
  • 5.5 Heteroskedasticity-Consistent Covariance Matrices 196
  • 5.6 The Delta Method 202
  • 5.7 Final Remarks 209
  • 5.8 Exercises 209

Chapter 6 Nonlinear Regression 213

  • 6.1 Introduction 213
  • 6.2 Method-of-Moments Estimators for Nonlinear Models 215
  • 6.3 Nonlinear Least Squares 224
  • 6.4 Computing NLS Estimates 228
  • 6.5 The Gauss-Newton Regression 235
  • 6.6 One-Step Estimation 240
  • 6.7 Hypothesis Testing 243
  • 6.8 Heteroskedasticity-Robust Tests 250
  • 6.9 Final Remarks 253
  • 6.10 Exercises 253

Chapter 7 Generalized Least Squares and Related Topics 257

  • 7.1 Introduction 257
  • 7.2 The GLS Estimator 258
  • 7.3 Computing GLS Estimates 260
  • 7.4 Feasible Generalized Least Squares 264
  • 7.5 Heteroskedasticity 266
  • 7.6 Autoregressive and Moving-Average Processes 270
  • 7.7 Testing for Serial Correlation 275
  • 7.8 Estimating Models with Autoregressive Errors 285
  • 7.9 Specification Testing and Serial Correlation 292
  • 7.10 Models for Panel Data 298
  • 7.11 Final Remarks 305
  • 7.12 Exercises 306

Chapter 8 Instrumental Variables Estimation 311

  • 8.1 Introduction 311
  • 8.2 Correlation Between Error Terms and Regressors 312
  • 8.3 Instrumental Variables Estimation 315
  • 8.4 Finite-Sample Properties of IV Estimators 324
  • 8.5 Hypothesis Testing 330
  • 8.6 Testing Overidentifying Restrictions 336
  • 8.7 Durbin-Wu-Hausman Tests 338
  • 8.8 Bootstrap Tests 342
  • 8.9 IV Estimation of Nonlinear Models 345
  • 8.10 Final Remarks 347
  • 8.11 Exercises 347

Chapter 9 The Generalized Method of Moments 352

  • 9.1 Introduction 352
  • 9.2 GMM Estimators for Linear Regression Models 353
  • 9.3 HAC Covariance Matrix Estimation 362
  • 9.4 Tests Based on the GMM Criterion Function 365
  • 9.5 GMM Estimators for Nonlinear Models 369
  • 9.6 The Method of Simulated Moments 383
  • 9.7 Final Remarks 393
  • 9.8 Exercises 394

Chapter 10 The Method of Maximum Likelihood 399

  • 10.1 Introduction 399
  • 10.2 Basic Concepts of Maximum Likelihood Estimation 399
  • 10.3 Asymptotic Properties of ML Estimators 408
  • 10.4 The Covariance Matrix of the ML Estimator 415
  • 10.5 Hypothesis Testing 420
  • 10.6 The Asymptotic Theory of the Three Classical Tests 429
  • 10.7 ML Estimation of Models with Autoregressive Errors 435
  • 10.8 Transformations of the Dependent Variable 437
  • 10.9 Final Remarks 443
  • 10.10 Exercises 444

Chapter 11 Discrete and Limited Dependent Variables 451

  • 11.1 Introduction 451
  • 11.2 Binary Response Models: Estimation 452
  • 11.3 Binary Response Models: Inference 460
  • 11.4 Models for More Than Two Discrete Responses 466
  • 11.5 Models for Count Data 475
  • 11.6 Models for Censored and Truncated Data 481
  • 11.7 Sample Selectivity 486
  • 11.8 Duration Models 489
  • 11.9 Final Remarks 495
  • 11.10 Exercises 495

Chapter 12 Multivariate Models 501

  • 12.1 Introduction 501
  • 12.2 Seemingly Unrelated Linear Regressions 501
  • 12.3 Systems of Nonlinear Regressions 518
  • 12.4 Linear Simultaneous Equations Models 522
  • 12.5 Maximum Likelihood Estimation 532
  • 12.6 Nonlinear Simultaneous Equations Models 540
  • 12.7 Final Remarks 543
  • 12.8 Appendix: Detailed Results on FIML and LIML 544
  • 12.9 Exercises 550

Chapter 13 Methods for Stationary Time-Series Data 556

  • 13.1 Introduction 556
  • 13.2 Autoregressive and Moving-Average Processes 557
  • 13.3 Estimating AR, MA, and ARMA Models 565
  • 13.4 Single-Equation Dynamic Models 575
  • 13.5 Seasonality 579
  • 13.6 Autoregressive Conditional Heteroskedasticity 587
  • 13.7 Vector Autoregressions 595
  • 13.8 Final Remarks 599
  • 13.9 Exercises 599

Chapter 14 Unit Roots and Cointegration 605

  • 14.1 Introduction 605
  • 14.2 Random Walks and Unit Roots 605
  • 14.3 Unit Root Tests 613
  • 14.4 Serial Correlation and Unit Root Tests 620
  • 14.5 Cointegration 624
  • 14.6 Testing for Cointegration 636
  • 14.7 Final Remarks 644
  • 14.8 Exercises 644

Chapter 15 Testing the Specification of Econometric Models 650

  • 15.1 Introduction 650
  • 15.2 Specification Tests Based on Artificial Regressions 651
  • 15.3 Nonnested Hypothesis Tests 665
  • 15.4 Model Selection Based on Information Criteria 675
  • 15.5 Nonparametric Estimation 677
  • 15.6 Final Remarks 692
  • 15.7 Appendix: Test Regressors in Artificial Regressions 692
  • 15.8 Exercises 695

References 702

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-2-23 09:04:00
好书。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-2-23 09:34:00

非常感谢楼主能够免费提供。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-2-23 09:50:00
谢谢了
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2007-2-23 10:19:00
楼主真是好人,谢谢。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群